Skip to main content

Regulatory effects of statins on CCL2/CCR2 axis in cardiovascular diseases: new insight into pleiotropic effects of statins

Abstract

Background

HMG-CoA reductase inhibitors are well-known medications in the treatment of cardiovascular disorders due to their pleiotropic and lipid-lowering properties. Herein, we reviewed the effects of statins on the CCL2/CCR2 axis.

Method

Scopus and Pubmed databases were systematically searched using the following keywords:” Hydroxymethylglutaryl CoA Reductase Inhibitors”,” HMG-CoA Reductase Inhibitors”,” Statins”, “CCL2, Chemokine”, “Monocyte Chemoattractant Protein-1” and “Chemokine (C-C Motif) Ligand 2”. Evidence investigating the role of statin on MCP-1 in CVD was identified and bibliographies were completely evaluated to gather further related studies.

Results

The anti-inflammatory effects of statins on the CCL2/CCR2 pathway have been widely investigated. Despite inconclusive results, a great body of research supports the regulatory roles of statins on this pathway due to their pleiotropic effects. By disrupting the CCL2/CCR2 axis, statins attenuate the infiltration of monocytes and macrophages into the zone of inflammation and hence down-regulate the inflammatory cascades in various CVDs including atherosclerosis, cardiac remodeling, and stroke, among others.

Conclusion

CCL2 plays a major role in the pathogenesis of cardiovascular disorders. Down-regulation of CCL2 is proposed as one of the pleiotropic properties of statins. However, more investigations are required to elucidate which statin in what dose exerts a more potent effect on CCL2/CCR2 pathway.

Introduction

Chemokines are a superfamily of protein molecules that play a pivotal role in immunoregulation. Although initially recognized as leukotactic agents, further studies elucidated other roles in inflammation namely fibrosis, angiogenesis, and tissue remodeling [1]. There are four known major subfamilies of chemokines based on the presence of cysteine residues at the N-terminus: the CC, CXC, C, and CX3C. Five potent monocyte chemoattractants have currently been identified in the CC subfamily including MCP-1 (CCL2), MCP-2 (CCL8), MCP-3 (CCL7), MCP-4 (CCL13) and MCP-5 (CCL12) [2]. MCP-1 is the first discovered and most broadly studied human CC cytokine [3]. It is involved in migrating and recruiting monocytes, T lymphocytes, and natural killer (NK) cells in several inflammatory processes such as neurological diseases. It also contributes to the development of autoimmune disorders such as multiple sclerosis and rheumatoid arthritis [4, 5]. This chemokine displays both pro- and anti-tumor activities; promoting tumor progression by improvement of angiogenesis and interfering with metastasis through immune system activation [6]. The role of MCP-1 in the pathogenesis of cardiovascular diseases (CVD) has been of great interest recently. It is shown that individuals who are genetically predisposed to higher circulating levels of MCP-1, tend to have a higher incidence of CVDs [7]. Statins -inhibitors of 3-hydroxy-3-methylglutaryl coenzyme A (HMG-CoA) reductase, are mainly indicated as powerful lipid-lowering agents in CVDs. This class of medication was introduced to the market in 1987. Statins exert protective effects through both LDL-C (low-density lipoprotein- cholesterol) dependent and LDL-C independent pathways [8, 9]. These pharmacological agents inhibit HMG-CoA reductase reversibly; interfering with a crucial step of cholesterol biosynthesis. Inhibition of HMG-CoA reductase ultimately results in decreased serum LDL-C and upregulated liver LDL-C receptors [10]. Notably, these agents possess numerous biological activities, which are independent of their putative LDL-lowering activity [9, 11,12,13,14,15,16,17]. These so-called pleiotropic actions include enhancement of endothelial dysfunction, which promotes the expression of eNOS resulting in vasodilation [18, 19]. They also increase the number of endothelial progenitor cells leading to post-ischemic neovascularization [20]. These medications are suggested as an adjunctive treatment for autoimmune diseases owing to their immunomodulatory, anti-inflammatory, antioxidant, and anti-thrombotic effects [21,22,23,24,25]. The anti-inflammatory effects of statins include attenuation of C-reactive protein, interleukins, and adhesion molecules such as intracellular adhesion molecule-1(ICAM-1) [26]. A growing body of literature has investigated the inhibition of the MCP-1/CCR2 axis as a possible therapeutic strategy in CVDs. Here, we summarize the latest evidence concerning the modulatory effect of statins on the CCL2/CCR2 axis.

Atherosclerosis

Atherosclerosis is an inflammatory process initiated with endothelial damage [27]. Circulating monocytes then infiltrate through endothelial cells and become macrophages. These cells phagocytize LDL-C accumulates and convert into foam cells which drive the formation of primary atherosclerotic plaque. Besides, smooth muscle cells (SMC) in the medial layer migrate to sub-endothelial tissue in response to inflammatory mediators such as IL-1 and TNF and participate in the formation of the fibrous cap by secreting extracellular matrix [28]. The MCP-1/CCR2 axis plays a significant role in the pathogenesis of atherosclerosis. It is shown that macrophage-rich arterial lesions express higher levels of MCP-1 which then increases monocyte infiltration into the sub-endothelial layer [29, 30]. Goslinga et al. reported that deletion of the MCP-1 gene in transgenic mice dramatically reduced macrophage recruitment and arterial wall lesion formation [31]. Consistently, Boring et al. revealed that selective deletion of CCR2 in Apo-E deficient mice significantly protected against the development of atherosclerotic lesions without altering lipoprotein metabolism [32]. At the population scale, a meta-analysis conducted by Mao et al. showed that MCP-1–2518 A > G polymorphism significantly increased susceptibility to myocardial infarction (MI) in the Asian population but not in the Caucasian population [33]. In a large cohort conducted on patients with acute coronary syndromes, increased MCP-1 baseline levels were correlated with atherosclerosis traditional risk factors, increased mortality, and MI risk, irrespective of baseline variables [34]. Altogether, this evidence highlights the importance of the MCP-1/CCR2 axis at multiple stages of atherosclerosis and suggests it as a possible therapeutic target. Statins are broadly available medications used in the treatment of individuals at high risk of atherosclerosis. The association between statin therapy and the production of various chemokines including MCP-1 has been largely studied. Simvastatin is shown to reduce the expression of MCP-1 as well as other chemokine receptors such as CCR1, CCR2, CCR4, and CCR5 in TNF-induced endothelial cells/macrophages via down-regulation of geranylgeranyl pyrophosphate pathway [35]. These data are consistent with the findings of Tuomisto et al., which showed that simvastatin downregulated the expression of many pro-inflammatory mediators such as MCP-1, TNF, VCAM (vascular cell adhesion molecule), and tissue factor [36]. Simvastatin has also demonstrated the capacity to reduce MCP-1-induced monocyte migration of human monocytic THP-1 cells [37]. In vivo studies have confirmed the simvastatin role in the reduction of plaque formation. Liu et al. reported that simvastatin reduced aortic atherosclerotic lesions in Apo-E deficient mice and down-regulated the expression of MCP-1, VCAM-1, RAGE, and HMGB1 in these lesions [38]. An investigation on rabbits that were treated with a high-cholesterol diet al.ong with simvastatin showed reduced size of the aortic plaque, intimal thickness, and MCP-1 expression [39]. From a clinical view, Pereira et al. concluded that long-term simvastatin therapy (12 months) ameliorated circulating MCP-1. However, this result was confined to male patients. It is worth mentioning that post-menopausal status accompanied by higher CRP levels in females was declared as a possible explanation [40]. Koh et al. evaluated the effect of daily simvastatin administration (20–40 mg) for 14 weeks in patients with hypercholesterolemia and established coronary artery disease (N = 13). The results indicated that administration of simvastatin significantly decreased MCP-1, MMP-9, and TNF and supported its role in the reduction of future cardiovascular events through non-lipid mechanisms such as improvement of endothelial function and inflammatory responses [41]. Further, the association of simvastatin (20 and 40 mg; adjusted to actual cholesterol level) and reduced MCP-1 remained significant even after treatment for 6 weeks (N = 107) [42]. It is of note that simvastatin’s effect on monocyte cytokine release is not confined to patients affected with hypercholesterolemia. A randomized clinical trial (RCT) on simvastatin treatment (40 mg twice daily) in patients with isolated hypertriglyceridemia and peripheral artery stenosis showed a decreased monocyte excretion of MCP-1 following 12 weeks of treatment (N = 43) [43]. Despite simvastatin’s effect on endothelial and monocyte release of MCP-1, the question remained as to whether simvastatin therapy affects vascular indices concomitantly or not. Guan et al. evaluated the role of simvastatin therapy (20 mg/d for 12 weeks) on the ankle-brachial index (ABI), flow-mediated dilation (FMD), and nitroglycerin-mediated dilation (NMD) of the brachial artery in 51 patients with hypercholesterolemia. The results revealed that simvastatin possesses the capability to enhance clinical indices of blood flow (ABI and FMD); accompanying reduced levels of circulating MCP-1 [44]. Several clinical investigations support simvastatin’s effects on suppression of MCP-1/CCR2 axis; ultimately suggesting its protective role against atherosclerosis development [45]. Atorvastatin, another member of the statin family, was the best-selling medication back in the 2000s [46]. Evidence demonstrated that pretreatment of murine macrophages with atorvastatin reduced ox-LDL-induced morphological changes and secretion of inflammatory chemokines including MCP-1 through inhibition of the COX-2 pathway [47]. In addition, atorvastatin ameliorated the release of MCP-1 and interferon-inducible protein 10 from cultured VSMC (vascular smooth muscle cells) probably through inhibition of NF-kappaB activity [48]. These results strongly suggest atorvastatin’s participation in the stabilization of atherosclerotic lesions. Nachtigal et al. evaluated this hypothesis in ApoE/LDLR-deficient mice that were fed an atherogenic western diet. They showed that treatment with high-dose atorvastatin significantly reduced the circulating levels of MCP-1 and down-regulated expression of VCAM-1 and ICAM-1 in the vessel wall [49]. Consistently, atorvastatin administration reduced endothelial-monocyte recruitment through the down-regulation of several chemokines including MCP-1 and its receptor [50]. It is of note that atorvastatin’s effects on plaque stability are independent of its lipid-lowering effects. An investigation conducted by Nie et al. showed that the administration of atorvastatin (10 mg/kg/day) significantly reduced the number of vulnerable plaques. However, this dosage did not affect plaque progression and total plasma cholesterol levels. Further experiments revealed that atorvastatin remarkably ameliorated the infiltration of macrophages and deposition of sub-endothelial lipids accompanied by elevated levels of collagenase and matrix metalloproteinase (MMP). They showed that reduced infiltration of monocytes/ macrophages is partly due to decreased levels of MCP-1, CX3CL1 (chemokine (C-X3-C motif) ligand 1), and their receptors CCR2 and CX3CR1, respectively [50]. In a double-blind clinical study, Okopien et al., enrolled 52 patients with primary mixed dyslipidemia to elucidate the effects of a 30-day treatment with atorvastatin (20 mg daily) on levels of MCP-1 released from peripheral monocytes. They found increased release of MCP-1 in patients affected with dyslipidemia compared to control subjects. Also, atorvastatin treatment reduced LPS-induced and unstimulated MCP-1 release from extracted peripheral monocytes emphasizing the importance of MCP-1/CCR2 axis in the management of CVDs [51]. Another clinical trial supported the role of atorvastatin (20 mg daily) in reducing secreted MCP-1 from peripheral monocytes, beyond its lipid-lowering properties [52]. Another study on 77 subjects with dyslipidemia showed that atorvastatin (5 mg/day) for 12 months significantly reduced circulating MCP-1 levels and CIMT (carotid intima-media thickness). CIMT changes were significantly but weakly associated with MCP-1 changes, but they were not correlated with TNF and hsCRP values. This finding convinced the authors to attribute MCP-1 changes to the lipid-lowering effects of atorvastatin. It is worth mentioning that Pitavastatin (1 mg/day) appeared superior to atorvastatin in the reduction of MCP-1 and CIMT. Also, Pitavastatin showed more potency in the reduction of inflammatory mediators like hsCRP and TNF [53] (Fig. 1). Table 1 summarizes various literature concerning statin’s role in the regulation of the MCP-1/CCR2 axis in atherosclerosis.

Fig. 1
figure 1

The CCL2/CCR2 axis plays a crucial role in the pathogenesis of atherosclerosis. Statins significantly interfere with the development and progression of atherosclerotic lesions by modulating the CCL2/CCR2 pathway as depicted(inspired by [209]). This figure shows how statins interfere with the migration of monocytes into the subendothelial layer, the production of collagen by smooth muscle cells (SMCs), lipid accumulation, and instability of developed plaques

Table 1 Statins modulatory effect on CCL2/CCR2 axis in atherosclerosis

Ischemic heart disease and post-infarction remodeling

The development of atherosclerotic lesions in coronary vessel walls is associated with serious mortality rates and poses a huge financial burden on healthcare systems. Despite the reduced incidence of acute mortality rates due to improved reperfusion techniques and proper medical attention, the incapability of the myocardium to regenerate following ischemic events results in inflammation-induced scar formation [54]. Myocardial infarction (MI) is followed by three overlying phases including inflammatory, proliferative, and maturation phases. The release of chemokines and activation of inflammatory cascades lead to the recruitment of leukocytes into the ischemic zone. In addition to phagocytosis of necrotic cells, leukocytes induce growth factors and drive the formation of granulation tissue. In the proliferative phase, activated myofibroblasts secrete extracellular matrix proteins and considerable microvascularity develops thereafter. Ultimately, collagen scar tissue replaces the granulation tissue during the maturation phase due to the apoptosis of fibroblasts and vascular cells [55]. This process which is referred to as cardiac remodeling leads to reduced ventricular ejection fraction and subsequent heart failure. Chemokines including CC family and particularly MCP-1, play a major role in the induction and maintenance of these inflammatory cascades. In a rat model, neutralizing antibodies were used to interfere with CCL2/CCR2 axis and resulted in reduced infarct area through attenuated recruitment of macrophages and down-regulation of intercellular adhesion molecule-1 (ICAM-1) [56]. It is suggested that MCP-1 may contribute to cardiac remodeling through its pro-angiogenic properties [57]. Accordingly, Sakai et al. illustrated the role of the MCP-1/CCR2 signaling pathway in organ fibrosis [58]. In addition to its broadly known leukotactic effect, MCP-1 participates in the regulation of monocyte differentiation in cardiac remodeling. In MCP-1-/- mice, disrupted differentiation of monocytes was found in the infarct area elucidated by reduced expression of osteopontin-1 which is a gene highly involved in monocyte-macrophage differentiation [59]. Despite broad investigations, the regulatory role of the CCL2/CCR2 pathway on cardiac remodeling has remained inconclusive. MCP-1-/- mice displayed extended MI-induced inflammation and impaired phagocytosis of myocytes. These changes were accompanied by decreased levels of inflammatory mediators such as TNF and IL-1β which ultimately resulted in reduced ventricular remodeling in CCL2 knocked-out mice [59]. Contradictory, Morimoto et al. revealed that over-expression of MCP-1 led to reduced ventricular dysfunction and post-ischemic infarct size in MHC/MCP-1 mice. They reported macrophage accumulation, myofibroblast induction, IL-6 enhanced secretion, and neovascularization improvement as a consequence of MCP-1 over-expression [60]. These findings are in line with previous in vitro studies denoting MCP-1 role in the reduction of hypoxia-induced death of cardiomyocytes; suggesting a surviving pathway following ischemia [61] to reduce, at least in part, the detrimental effects of hypoxia on the cardiovascular system [62]. Evidence revealed that CCL2/CCR2 interaction leads to expression of MCP-induced protein (MCP-IP); a transcription factor, the function of which is still under investigation. Zhou et al. showed that MCPIP acts as a pro-apoptotic mediator in the HECK293 cell line. In vivo, they reported elevated levels of MCPIP in transgenic mice models of heart failure. Also, they found higher MCPIP levels in human ischemic hearts compared to non-ischemic explants [63]. It is suggested that MCPIP modulates apoptosis through endoplasmic reticulum stress [64, 65]. At the same time, MCPIP has been addressed to exert an inhibitory effect on inflammation by suppressing the NF-кB signaling pathway. Mice with a cardiomyocyte-specific expression of MCPIP showed attenuated cardiac remodeling, enhanced survival, and decreased hypertrophy compared to wild-type following MI [66]. These results are in agreement with previous studies which suggested MCP-1 overexpression as a protective factor in cardiac remodeling [60, 67]. Also from a clinical view, there seems no consensus on the association between circulating MCP-1 levels and the incidence of MI. Framingham heart study showed no correlation between these two but confirmed a significant participation of the MCP-1-2578G allele in CVD development [68]. Consistently, Mosedale et al. showed no remarkable association between MCP-1 levels and a history of cardiac disease [69]. In contrast, evidence suggests MCP-1 as a possible surrogate marker of atherosclerosis [70]. Increased level of MCP-1 following STEMI (ST-elevation myocardial infarction) has been reported and this elevation was inversely associated with early formation of MI [71]. Altogether, it is established that MCP-1 plays a crucial role in the pathogenesis of MI and post-MI cardiac remodeling. The MCP-1/CCR2 pathway is a promising therapeutic target and several attempts have been made to minimize post-ischemic ventricular remodeling by modulating the CCL2/CCR2 axis. The role of statins in the modulation of the MCP-1/CCR2 axis and its impact on MI and post-MI remodeling has been recently studied. Evidence shows the promising capability of statins in down-regulation of MI-induced inflammation in murine models (Fig. 2). It is elucidated that oral administration of atorvastatin for 4 weeks (10 mg/kg) could reduce circulating MCP-1 levels and recruitment of macrophages following MI. Atorvastatin changed the equilibrium in favor of anti-inflammatory mediators; suppressing TNF and IL-6 levels and improved left ventricular ejection fraction [72]. Also, Simvastatin reduced ischemia/reperfusion injury in a rat model of heart isograft transplantation. Oral administration of 1 mg/kg simvastatin before surgery led to lessened expression of CCL2 and CCR2 as well as reduced neutrophil/macrophage infiltration and incidence of MI [73]. Moreover, Simvastatin showed a protective role in sepsis-induced cardiac depression. It was demonstrated that treating Wistar rats with 0.2 µg/g simvastatin for one week before sepsis induction improved left-ventricular systolic pressure and reduced cardiac troponin and MCP-1 levels [74]. From a clinical view, several investigations have evaluated the pleiotropic impacts of statins on inflammatory cascades such as the CCL2/CCR2 axis in ischemic heart diseases. In a practical setting, ischemic heart disease divides into stable angina and acute coronary syndromes (ACS) which include unstable angina, STEMI, and non-STEMI. Atorvastatin (20 mg/day) reduced CCL2 and ICAM-1 protein concentrations in patients with stable angina following a 10-week treatment (N = 44) [75]. Clinical evidence shows a promising therapeutic value of atorvastatin in patients with ACS. In a randomized clinical trial, MCP-1 and VCAM-1 levels remained unchanged following a low-dose (10 mg/day) atorvastatin treatment for 6 weeks compared to initial values (n = 24); while these inflammatory indices increased significantly in the control group (n = 23). TNF and IL-6 remained insignificant between the two groups [76]. Similarly, Xu et al. demonstrated that the same dose of atorvastatin for the same period further reduced MCP-1 levels in the treatment group compared to the control group [77]. Lewandowski et al. elucidated that administrating 20 mg/d atorvastatin for six weeks reduced MCP-1 levels but had an insignificant impact on CRP and IL-6. They concluded that despite a reduction in MCP-1 levels following 6 weeks of treatment, major adverse cardiovascular events (MACE) and restenosis were not statistically different between the treatment and control groups [78]. A large clinical trial titled “Achieve Cholesterol Targets Fast with Atorvastatin Stratified Titration”- suggested that even low-dose (10 mg/day) atorvastatin treatment for a short period (12 weeks) could reduce circulating MCP-1 and ICAM levels; exerting anti-inflammatory effects in patients affected with CHD, CHD-equivalents or subjects with a 10-year risk of developing CHD more than 20%. Notably, patients received different doses of atorvastatin (10-80 mg/day) due to their baseline LDL levels [79]. Despite a growing body of literature supporting atorvastatin’s role on the CCL2/CCR2 axis, it should be noted that there is clinical evidence that even challenges the role of atorvastatin in reducing MCP-1 levels. Ansheles et al. found no significant changes in MCP-1 levels following 3 months of atorvastatin administration in 58 patients with CHD. However, they showed increased endothelial progenitor cells and reduced levels of VEGF in these patients [80]. Several investigations which address statins effect on CCL2 in cardiac diseases are summarized In Table 2.

Fig. 2
figure 2

Atherosclerosis results in many fatal clinical complications such as myocardial infarction, stroke, and aneurysm. Regulation of CCL2/CCR2 pathways is suggested as a possible therapeutic approach. Statins exert a part of their pleiotropic effect by modulating the CCL2/CCR2 axis. This figure explains how statins exert their protective effect on the catastrophic consequences of atherosclerosis based on in vitro and in vivo investigations. Increased adipose tissue is associated with higher levels of CCL-2. Statins showed promising results in down-regulating CCL2 and other inflammatory markers in adipocytes; the cells whose contribution to the atherosclerosis process is established. Red arrows depict how statins intervene in the pathogenesis of atherosclerosis complications based on in vitro and in vivo models

Table 2 Statins modulatory effect on CCL2/CCR2 axis in cardiac diseases

Cardio-metabolic disease

It is estimated that a quarter of the world’s population is affected by metabolic syndrome which imposes a huge financial burden on the healthcare system [81]. Table 3 addresses the regulatory effect of various statins on MCP-1/CCR2 in metabolic diseases.

Table 3 Statins modulatory effect on CCL2/CCR2 axis in metabolic-associated conditions

Diabetes mellitus

Endothelial cells in individuals treated with high glucose have shown enhanced release of MCP-1 and expression of VCAM-1 which reinforced the interaction between monocyte-endothelial cells synergistically [82]. In addition, human aortic SMCs treated with high glucose displayed up-regulated levels of fractalkine and MCP-1 which subsequently increased monocyte-SMC adhesiveness through NF-KB, MAPK, and AP-1 pathways [83]. It is shown that treatment of H9c2 cardiomyoblasts and rat cardiomyocytes with high glucose led to increased expression of MCP-1 and MCPIP; which consequently resulted in elevated reactive oxygen species (ROS), ER stress, and cell death [3, 84]. Clinically, evidence is inconclusive whether MCP-1 is higher in patients affected with DM or not. A large cross-sectional study enrolling 2472 subjects with T1DM (type 1 diabetes mellitus) and 2654 healthy individuals showed that MCP-1 levels were significantly higher in healthy subjects. Interestingly, MCP-1 levels were significantly higher in individuals affected with several complications of DM [85]. Consistently, Xu et al. conducted a cross-sectional study including 150 patients with T2DM and 50 healthy individuals and suggested that MCP-1 A-2518G polymorphism was associated with macrovascular complications of T2DM. Due to the prominent role of MCP-1 in DM complications, serious efforts have been made to investigate the possible therapeutic value of statins in the prevention or treatment of diabetes cardiovascular complications. Simvastatin treatment (20 mg/d) diminished MCP-1 and ICAM-1 serum levels in Streptozocin (STZ)-induced diabetic rats which highlights the effects of this medication in impairing monocyte-endothelial adherence [86]. In agreement, Fang et al. demonstrated that oral administration of rosuvastatin (15 mg/kg/d) for 2 weeks could reduce levels of MCP-1, NADPH oxidase, and inducible nitric oxide synthase in arteriovenous fistula created in STZ-induced diabetic rats. It also improved luminal diameter and blood flow within the fistula [87]. In contrast, Calkin et al. indicated that rosuvastatin (5 mg/d) treatment for 20 weeks in STZ-induced diabetic Apo-E deficient mice reduced atherosclerotic plaques but MCP-1 changes remained insignificant [88]. Notably, pravastatin exhibited promising therapeutic value in halting the progression of cardiovascular remodeling in Otsuka Long-Evans Tokushima Fatty (OLETF) rats which spontaneously develop T2DM. Yu et al. found that pravastatin reduced cardiomyocyte expression of TGF-β1, MCP-1, and eNOS in statin-treated OLEF rats. Additionally, echocardiographic findings indicated less development of left ventricular diastolic dysfunction, attenuated wall/lumen ratio, and improved perivascular fibrosis of coronary arteries [89]. In a clinical view, it is shown that peripheral blood mononuclear cells (PBMCs) extracted from diabetic patients who were treated with low-dose atorvastatin (10–20 mg/d) released less MCP-1 and VEGF compared to statin-free diabetic patients. This result supports the role of atorvastatin in interrupting angiogenesis in an atherosclerotic plaque providing more stability [90]. In line with these findings, Dworacka et al. found that low-dose atorvastatin (10 mg/d) or simvastatin (10–20 mg/d) treatment in patients with T2DM and hypercholesterolemia reduced MCP-1 and VCAM-1 levels; providing evidence for the anti-angiogenic role of low-dose statins. However, no significant difference in angiogenin, a potent angiogenesis factor, was found between the treatment and control groups [91]. Also, simvastatin (20 mg/d) for 30 days decreased the release of MCP-1, TNF, and IL-1β by monocytes in patients with isolated impaired fasting glucose without alteration in glucose metabolism. It exerted the same effect in patients with hypercholesterolemia and displayed higher potency in the attenuation of cytokine release after 90 days [92]. Despite the studies which confirmed statin’s role in interrupting CCL2/CCR2 axis, some literature did not show such an effect. Mori et al. evaluated the effects of three different statins in patients with concomitant hypercholesterolemia and T2DM for 3 months. Rosuvastatin was the only medication which reduced MCP-1 levels. Both rosuvastatin (5 mg/d, N = 37) and atorvastatin (10 mg/d, N = 42) reduced hsCRP but pravastatin (10 mg/d, N = 38) did not exert such significant reduction [93]. Besides, atorvastatin treatment for 16 weeks did not decrease MCP-1, interleukin-6, and plasminogen activator inhibitor-1(PAI-1) in 84 Japanese diabetic patients with hypercholesterolemia; though it reduced hsCRP significantly in patients whose final LDL was less than100 mg/dl [94]. Another clinical trial on 27 diabetic patients with hyperlipidemia supported the hsCRP-lowering effects of atorvastatin (10 mg/d) for 12 weeks. The MCP-1 levels were only reduced in women who received statin treatment [95].

Hypertension

Since inflammation is the underlying mechanism in development of hypertension, the organs involved in control of blood pressure undergo significant vascular changes following the infiltration of inflammatory cells [96]. It is indicated that MCP-1/CCR2 axis mainly participates in recruiting monocytes and macrophages into the vascular wall in a mouse model [97]. CCL2-deficient mice demonstrated less cardiac fibrosis and blood pressure compared to wild type following 8 weeks of treatment with deoxycorticosterone [98]. Similarly, deletion of MCP-1 receptor in transgenic mice attenuated recruitment of macrophages and aorta remodeling following angiotensin2-induced hypertension [97]. Also, antagonizing CCR2 in DOCA/salt-induced hypertensive mice was associated with less recruitment of macrophages and improved blood pressure [99]. In a practical view, a study on 740 hypertensive individuals revealed higher levels of MCP-1 which were also associated with hypertension-induced organ injury [100]. Also, it is elucidated that CCR2 is up-regulated in monocytes of patients with hypertension [97]. Limited data are available concerning the statins’ effects on the CCL2/CCR2 axis in isolated hypertension. Atorvastatin was found to down-regulate aortic expression of MCP-1 in hypertensive dahl-sensitive rats. It improved endothelial function, enhanced endothelium-dependent relaxation in response to acetylcholine and reduced aortic but not cardiac hypertrophy compared to the high-salt-fed group [101]. Results of a multi-center 12-week trial revealed that baseline MCP-1 levels were significantly higher in hypertensive individuals (N = 677) compared to normotensive participants (N = 581). Such elevations were not detected in patients with DM or metabolic syndrome. MCP-1 was significantly associated with high SBP (systolic blood pressure) and calculated risk of a cardiovascular event. In this trial participants with hyperlipidemia were assigned to varying doses of atorvastatin (10, 20, 30, and 40). Despite a significant reduction in CRP levels after 6 weeks of treatment, MCP-1 levels were only transiently reduced and did not persist till the end of the study [102]. It is documented that combination therapies in hypertensive individuals may provide better insight into statins’ effects on CCL2/CCR2 axis. Accordingly, a clinical trial evaluated the anti-inflammatory effects of amlodipine-atorvastatin vs. atorvastatin (20 mg/d) for 4–6 weeks in hypertensive candidates prior to endarterectomy. Findings revealed that atorvastatin provided an insignificant reduction in MCP-1 serum levels, whilst its combination with amlodipine notably decreased MCP-1 levels and also macrophage infiltration [103]. In a double-blind RCT on 47 hypertensive, hypercholesterolemic patients, simvastatin (20 mg for 8 weeks) reduced MCP-1 and hsCRP levels. Also, blood flow-mediated vascular dilation which is an indicator of endothelial function was improved following simvastatin treatment. Both of these effects were accentuated by addition of losartan [104, 105]. In vivo models that were given simvastatin showed a great reduction in cardiac hypertrophy induced by increased blood pressure variability which in turn provokes end-organ injury particularly in the elderly [106]. However, simvastatin exerted no effects on MCP-1, TGF-β, macrophage infiltration, and cardiac fibrosis in a murine model of hypertension with pronounced variability of blood pressure [107].

Stroke

It is estimated that one out of four people will be affected by stroke during their lifetime [108]. Ischemic stroke is the most prevalent stroke type which usually occurs due to the occlusion of cerebral arteries by emboli originating from cervical arteries, aortic arch, or the heart. Other contributing causes include intracranial atherosclerotic plaques, dissection of cervical arteries and vascular inflammation [109]. In essence, neuroinflammation is the prominent underlying pathogenesis leading to expression of numerous chemokines and activation of downstream cascades which precipitate permanent neuronal death. Macrophages and resident microglial cells are primarily involved in acute inflammatory response and are responsible for secretion of mediators such as TNF, IL-1β, and IL-6 [110]. In vivo studies have indicated upregulation of MCP-1 in brain tissue as early as 6 h following ischemia [111]. Macrophage infiltration and infarct area were reduced in MCP-1 deficient mice versus transgenic mice with overexpressed MCP-1 in which both parameters were increased [112, 113]. By the same token, analysis of 8293 healthy individuals in a MEGASTROKE study revealed that genetically predisposed individuals to high levels of circulating MCP-1 tend to have a higher risk of stroke particularly cardiometabolic and large-artery subtypes [7, 114]. Accordingly, a notable meta-analysis on 17,180 stroke-free subjects elucidated a higher risk of stroke in individuals with increased levels of MCP-1 in long term [115]. These findings underline the therapeutic value of MCP-1/CCR2 axis inhibition in minimizing the risk of stroke. Despite comprehensive research focused on statin therapy in stroke, there is still a paucity of data on specific effects of these medications on MCP-1/CCR2 axis [116, 117]. In vitro studies described the role of atorvastatin in interrupting T cells’ adhesion to endothelium via downregulation of MCP-1 and claudin-3 and further maintenance of BBB (blood brain barrier) integrity [118]. In vivo investigations also support the neuroprotective role of atorvastatin in MCAO (middle cerebral artery occlusion) rats (Fig. 2). Zhang et al. showed that atorvastatin enhanced post-ischemic neurologic functions and attenuated the infarct area. Additionally, levels of MCP-1, TNF, and IL-6 were significantly downregulated in atorvastatin-treated group compared to MCAO group. They explained that atorvastatin could participate in intestinal immunomodulation; decrease MCP-1 and TNF levels and reverse intestinal microbiology. Interestingly, fecal transplantation of these mice into MCAO mice ameliorated post-ischemic inflammation, reduced MCP-1 levels and improved cognitive functions [119]. An in vivo investigation showed that pretreatment with subcutaneous simvastatin in three doses (20 mg/kg) reduced MCP-1 and IL-1β levels in a model of permanent middle cerebral artery occlusion. Also, simvastatin prevented activation of NF-KB and ERK1/2 pathways following ischemia [120]. However, oral simvastatin (2,10,20 mg/kg) did not affect the expression of inflammatory mediators and incidence of brain injury in spontaneously hypertensive stroke-prone rats (SHSPR). On the contrary, rosuvastatin administration (1,10 mg/kg) attenuated inflammatory signaling cascades correlated with brain injury which in turn increased survival rate, and downregulated the expression of MCP-1, TGF-β, and TNF levels in kidney samples of SHSPR models [121]. The modulatory effects of statins are not confined to cerebral vascular events. Table 4 depicts how statins intervene in other vascular diseases through MCP-1/CCR2 axis.

Table 4 Statins modulatory effect on CCL2/CCR2 axis in cerebral vascular events and other vascular conditions

Conclusion

CCL2/CCR2 axis largely participates in development of various CVDs which makes it a great therapeutic target. Among non-selective modulators of CCL2, statins are noticed due to their broad consumption in vascular pathologies. According to a great body of literature, this class of medications exert part of their pleiotropic effects through regulation of MCP-1/CCR2 pathway. However, more studies are required to elaborate on the comparative potency of each statin in inhibition of this pathway. In this context, the evidence from RCTs remains limited and warrants further clinical investigation. Additionally, it is still to be determined whether and to what extent the modulation of the MCP-1/CCR2 pathway by statins can account for the well-documented impact of these drugs in reducing cardiovascular events and outcomes [122, 123]. Another avenue for future research involves investigating whether several classes of non-statin agents, which have emerged as effective lipid-lowering therapies [124,125,126,127], can modulate the MCP-1/CCR2 pathway through their LDL-lowering effects. Finally, considering that the combination of statins with newer agents has been suggested for managing more severe forms of hypercholesterolemia, it would be to explore the clinical impact of such combinations on the CCL2/CCR2 axis.

Data availability

Not applicable.

References

  1. Lukacs NW. Role of chemokines in the pathogenesis of asthma. Nat Rev Immunol. 2001;1(2):108–16. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/35100503.

    Article  CAS  PubMed  Google Scholar 

  2. Deshmane SL, Kremlev S, Amini S, Sawaya BE. Monocyte chemoattractant protein-1 (MCP-1): an overview. J Interferon Cytokine Res. 2009;29(6):313–26. https://doiorg.publicaciones.saludcastillayleon.es/10.1089/jir.2008.0027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Panee J. Monocyte chemoattractant protein 1 (MCP-1) in obesity and diabetes. Cytokine. 2012;60(1):1–12. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cyto.2012.06.018.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Mahad DJ, Ransohoff RM. The role of MCP-1 (CCL2) and CCR2 in multiple sclerosis and experimental autoimmune encephalomyelitis (EAE). Semin Immunol. 2003;15(1):23–32. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s1044-5323(02)00125-2.

    Article  CAS  PubMed  Google Scholar 

  5. Tong X, Zeng H, Gu P, Wang K, Zhang H, Lin X. Monocyte chemoattractant protein–1 promotes the proliferation, migration and differentiation potential of fibroblast–like synoviocytes via the PI3K/P38 cellular signaling pathway. Mol Med Rep. 2020;21(3):1623–32. https://doiorg.publicaciones.saludcastillayleon.es/10.3892/mmr.2020.10969.

    Article  CAS  PubMed  Google Scholar 

  6. Conti I, Rollins BJ. CCL2 (monocyte chemoattractant protein-1) and cancer. Semin Cancer Biol. 2004;14(3):149–54. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.semcancer.2003.10.009.

    Article  CAS  PubMed  Google Scholar 

  7. Georgakis MK, Gill D, Rannikmäe K, Traylor M, Anderson CD, Lee JM, et al. Genetically determined levels of circulating cytokines and risk of stroke. Circulation. 2019;139(2):256–68. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/circulationaha.118.035905.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Gholamalizadeh H, Ensan B, Sukhorukov VN, Sahebkar A. Targeting the CCL2-CCR2 signaling pathway: potential implications of statins beyond cardiovascular diseases. J Pharm Pharmacol. 2024;76(2):138–53. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/jpp/rgad112.

    Article  PubMed  Google Scholar 

  9. Oesterle A, Laufs U, Liao JK. Pleiotropic effects of statins on the Cardiovascular System. Circ Res. 2017;120(1):229–43. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/circresaha.116.308537.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Sirtori CR. The pharmacology of statins. Pharmacol Res. 2014;88:3–11.

    Article  CAS  PubMed  Google Scholar 

  11. Amin F, Fathi F, Reiner Ž, Banach M, Sahebkar A. The role of statins in lung cancer. Archives Med Sci. 2022;18(1):141–52. https://doiorg.publicaciones.saludcastillayleon.es/10.5114/aoms/123225.

    Article  CAS  Google Scholar 

  12. Chamani S, Liberale L, Mobasheri L, Montecucco F, Al-Rasadi K, Jamialahmadi T, et al. The role of statins in the differentiation and function of bone cells. Eur J Clin Invest. 2021;51(7). https://doiorg.publicaciones.saludcastillayleon.es/10.1111/eci.13534.

  13. Chruściel P, Sahebkar A, Rembek-Wieliczko M, Serban MC, Ursoniu S, Mikhailidis DP, et al. Impact of statin therapy on plasma adiponectin concentrations: a systematic review and meta-analysis of 43 randomized controlled trial arms. Atherosclerosis. 2016;253:194–208. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.atherosclerosis.2016.07.897.

    Article  CAS  PubMed  Google Scholar 

  14. Mollazadeh H, Tavana E, Fanni G, Bo S, Banach M, Pirro M, et al. Effects of statins on mitochondrial pathways. J Cachexia Sarcopenia Muscle. 2021;12(2):237–51. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jcsm.12654.

    Article  PubMed  PubMed Central  Google Scholar 

  15. Sahebkar A, Kiaie N, Gorabi AM, Mannarino MR, Bainaconi V, Jamialahmadi T, et al. A comprehensive review on the lipid and pleiotropic effects of pitavastatin. Prog Lipid Res. 2021;84. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.plipres.2021.101127.

  16. Vahedian-Azimi A, Beni FH, Fras Z, Banach M, Mohammadi SM, Jamialahmadi T, et al. Effects of statins on the incidence and outcomes of acute kidney injury in critically ill patients: a systematic review and meta-analysis. Archives Med Sci. 2023;19(4):952–64. https://doiorg.publicaciones.saludcastillayleon.es/10.5114/aoms/159992.

    Article  CAS  Google Scholar 

  17. Vahedian-Azimi A, Mannarino MR, Shojaie S, Rahimibashar F, Galeh HEG, Banach M, et al. Effect of statins on prevalence and mortality of Influenza Virus infection: a systematic review and Meta-analysis. Archives Med Sci. 2022;18(6). https://doiorg.publicaciones.saludcastillayleon.es/10.5114/AOMS/149633.

  18. Ota H, Eto M, Kano MR, Kahyo T, Setou M, Ogawa S, et al. Induction of endothelial nitric oxide synthase, SIRT1, and catalase by statins inhibits endothelial senescence through the akt pathway. Arterioscler Thromb Vasc Biol. 2010;30(11):2205–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/atvbaha.110.210500.

    Article  CAS  PubMed  Google Scholar 

  19. Serban C, Sahebkar A, Ursoniu S, Mikhailidis DP, Rizzo M, Lip GYH, et al. A systematic review and meta-analysis of the effect of statins on plasma asymmetric dimethylarginine concentrations. Sci Rep. 2015;5. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/srep09902.

  20. Vasa M, Fichtlscherer S, Adler K, Aicher A, Martin H, Zeiher AM, et al. Increase in circulating endothelial progenitor cells by statin therapy in patients with stable coronary artery disease. Circulation. 2001;103(24):2885–90. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/hc2401.092816.

    Article  CAS  PubMed  Google Scholar 

  21. Khattri S, Zandman-Goddard G. Statins and autoimmunity. Immunol Res. 2013;56(2–3):348–57. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s12026-013-8409-8.

    Article  CAS  PubMed  Google Scholar 

  22. Bahrami A, Parsamanesh N, Atkin SL, Banach M, Sahebkar A. Effect of statins on toll-like receptors: a new insight to pleiotropic effects. Pharmacol Res. 2018;135:230–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.phrs.2018.08.014.

    Article  CAS  PubMed  Google Scholar 

  23. Parizadeh SMR, Azarpazhooh MR, Moohebati M, Nematy M, Ghayour-Mobarhan M, Tavallaie S, et al. Simvastatin therapy reduces prooxidant-antioxidant balance: results of a placebo-controlled cross-over trial. Lipids. 2011;46(4):333–40. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11745-010-3517-x.

    Article  CAS  PubMed  Google Scholar 

  24. Sahebkar A, Serban C, Mikhailidis DP, Undas A, Lip GYH, Muntner P, et al. Association between statin use and plasma d-dimer levels: a systematic review and meta-analysis of randomised controlled trials. Thromb Haemost. 2015;114(3):546–57. https://doiorg.publicaciones.saludcastillayleon.es/10.1160/TH14-11-0937.

    Article  PubMed  Google Scholar 

  25. Sahebkar A, Serban C, Ursoniu S, Mikhailidis DP, Undas A, Lip GYH, et al. The impact of statin therapy on plasma levels of Von Willebrand factor antigen: systematic review and meta-analysis of Randomised placebo-controlled trials. Thromb Haemost. 2016;115(3):520–32. https://doiorg.publicaciones.saludcastillayleon.es/10.1160/TH15-08-0620.

    Article  PubMed  Google Scholar 

  26. Pinal-Fernandez I, Casal-Dominguez M, Mammen AL. Statins: pros and cons. Med Clin (Barc). 2018;150(10):398–402. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.medcli.2017.11.030.

    Article  PubMed  Google Scholar 

  27. Libby P. Inflammation in atherosclerosis. Nature. 2002;420(6917):868–74. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/nature01323.

    Article  CAS  PubMed  Google Scholar 

  28. Rafieian-Kopaei M, Setorki M, Doudi M, Baradaran A, Nasri H. Atherosclerosis: process, indicators, risk factors and new hopes. Int J Prev Med. 2014;5(8):927–46.

    PubMed  PubMed Central  Google Scholar 

  29. Aiello RJ, Bourassa PA, Lindsey S, Weng W, Natoli E, Rollins BJ, et al. Monocyte chemoattractant protein-1 accelerates atherosclerosis in apolipoprotein E-deficient mice. Arterioscler Thromb Vasc Biol. 1999;19(6):1518–25. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.atv.19.6.1518.

    Article  CAS  PubMed  Google Scholar 

  30. Ylä-Herttuala S, Lipton BA, Rosenfeld ME, Särkioja T, Yoshimura T, Leonard EJ, et al. Expression of monocyte chemoattractant protein 1 in macrophage-rich areas of human and rabbit atherosclerotic lesions. Proc Natl Acad Sci U S A. 1991;88(12):5252–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1073/pnas.88.12.5252.

    Article  PubMed  PubMed Central  Google Scholar 

  31. Gosling J, Slaymaker S, Gu L, Tseng S, Zlot CH, Young SG, et al. MCP-1 deficiency reduces susceptibility to atherosclerosis in mice that overexpress human apolipoprotein B. J Clin Invest. 1999;103(6):773–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1172/jci5624.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Boring L, Gosling J, Cleary M, Charo IF. Decreased lesion formation in CCR2-/- mice reveals a role for chemokines in the initiation of atherosclerosis. Nature. 1998;394(6696):894–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/29788.

    Article  CAS  PubMed  Google Scholar 

  33. Mao B, Zhang J, Zhuo F. MCP-1-2518A > G polymorphism and myocardial infarction risk: a meta-analysis and meta-regression. Genet Test Mol Biomarkers. 2013;17(12):857–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1089/gtmb.2013.0318.

    Article  CAS  PubMed  Google Scholar 

  34. de Lemos JA, Morrow DA, Sabatine MS, Murphy SA, Gibson CM, Antman EM, et al. Association between plasma levels of monocyte chemoattractant protein-1 and long-term clinical outcomes in patients with acute coronary syndromes. Circulation. 2003;107(5):690–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.cir.0000049742.68848.99.

    Article  PubMed  Google Scholar 

  35. Veillard NR, Braunersreuther V, Arnaud C, Burger F, Pelli G, Steffens S, et al. Simvastatin modulates chemokine and chemokine receptor expression by geranylgeranyl isoprenoid pathway in human endothelial cells and macrophages. Atherosclerosis. 2006;188(1):51–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.atherosclerosis.2005.10.015.

    Article  CAS  PubMed  Google Scholar 

  36. Tuomisto TT, Lumivuori H, Kansanen E, Häkkinen SK, Turunen MP, Van Thienen JV, et al. Simvastatin has an anti-inflammatory effect on macrophages via upregulation of an atheroprotective transcription factor, kruppel-like factor 2. Cardiovasc Res. 2008;78(1):175–84. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/cvr/cvn007.

    Article  CAS  PubMed  Google Scholar 

  37. Wang S, Ran Y, Chen X, Li C, Cheng S, Liu J. Pleiotropic effects of Simvastatin on the regulation of Potassium channels in Monocytes. Front Pharmacol. 2020;11. https://doiorg.publicaciones.saludcastillayleon.es/10.3389/fphar.2020.00101.

  38. Liu M, Yu Y, Jiang H, Zhang L, Zhang PP, Yu P, et al. Simvastatin suppresses vascular inflammation and atherosclerosis in ApoE -/- mice by downregulating the HMGB1-RAGE axis. Acta Pharmacol Sin. 2013;34(6):830–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/aps.2013.8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Yang X, Wang L, Zeng H, Dubey L, Zhou N, Pu J. Effects of simvastatin on NF-kappaB-DNA binding activity and monocyte chemoattractant protein-1 expression in a rabbit model of atherosclerosis. J Huazhong Univ Sci Technol Med Sci. 2006;26(2):194–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/bf02895814.

    Article  CAS  Google Scholar 

  40. Pereira MM, Sant’Ana Santos TP, Aras R, Couto RD, Sousa Atta MLB, Atta AM. Serum levels of cytokines and chemokines associated with cardiovascular disease in Brazilian patients treated with statins for dyslipidemia. Int Immunopharmacol. 2014;18(1):66–70. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.intimp.2013.11.003.

    Article  CAS  PubMed  Google Scholar 

  41. Koh KK, Son JW, Ahn JY, Choi YM, Jin DK, Park GS, et al. Non-lipid effects of statin on hypercholesterolemic patients established to have coronary artery disease who remained hypercholesterolemic while eating a step-II diet. Coron Artery Dis. 2001;12(4):305–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/00019501-200106000-00006.

    Article  CAS  PubMed  Google Scholar 

  42. Rezaie-Majd A, Maca T, Bucek RA, Valent P, Müller MR, Husslein P, et al. Simvastatin reduces expression of cytokines interleukin-6, interleukin-8, and monocyte chemoattractant protein-1 in circulating monocytes from hypercholesterolemic patients. Arterioscler Thromb Vasc Biol. 2002;22(7):1194–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.ATV.0000022694.16328.CC.

    Article  PubMed  Google Scholar 

  43. Krysiak R, Okopien B. Monocyte-suppressing effects of simvastatin in patients with isolated hypertriglyceridemia. Eur J Intern Med. 2013;24(3):255–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ejim.2012.10.010.

    Article  CAS  PubMed  Google Scholar 

  44. Guan JL, Jiang W, Wang HY, Zeng H, Zhang SM, Wang G, et al. [Multiple effect of simvastatin on vascular endothelium of hypercholesterolemia patients]. Beijing Da Xue Xue Bao Yi Xue Ban. 2014;46(5):703–6.

    CAS  PubMed  Google Scholar 

  45. Rallidis LS, Hamodraka ES, Fountoulaki K, Moustogiannis G, Zolindaki MG, Kremastinos DT. Simvastatin exerts its anti-inflammatory effect in hypercholesterolaemic patients by decreasing the serum levels of monocyte chemoattractant protein-1. Int J Cardiol. 2008;124(2):271–2. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ijcard.2006.12.059.

    Article  PubMed  Google Scholar 

  46. Kogawa AC, Pires A, Salgado HRN, Atorvastatin. A review of Analytical methods for Pharmaceutical Quality Control and Monitoring. J AOAC Int. 2019;102(3):801–9. https://doiorg.publicaciones.saludcastillayleon.es/10.5740/jaoacint.18-0200.

    Article  CAS  PubMed  Google Scholar 

  47. Shao Q, Shen LH, Hu LA, Pu J, Jing Q, He B. Atorvastatin suppresses inflammatory response induced by oxLDL through inhibition of ERK phosphorylation, IκBα degradation, and COX-2 expression in murine macrophages. J Cell Biochem. 2012;113(2):611–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1002/jcb.23388.

    Article  CAS  PubMed  Google Scholar 

  48. Ortego M, Bustos C, Hernández-Presa MA, Tuñón J, Díaz C, Hernández G, et al. Atorvastatin reduces NF-kappaB activation and chemokine expression in vascular smooth muscle cells and mononuclear cells. Atherosclerosis. 1999;147(2):253–61. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0021-9150(99)00193-8.

    Article  CAS  PubMed  Google Scholar 

  49. Nachtigal P, Pospisilova N, Jamborova G, Pospechova K, Solichova D, Andrys C, et al. Atorvastatin has hypolipidemic and anti-inflammatory effects in apoE/LDL receptor-double-knockout mice. Life Sci. 2008;82(13–14):708–17. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.lfs.2008.01.006.

    Article  CAS  PubMed  Google Scholar 

  50. Nie P, Li D, Hu L, Jin S, Yu Y, Cai Z, et al. Atorvastatin improves plaque stability in ApoE-knockout mice by regulating chemokines and chemokine receptors. PLoS ONE. 2014;9(5). https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0097009.

  51. Okopien B, Krysiak R, Haberka M, Herman ZS. Effect of monthly atorvastatin and fenofibrate treatment on monocyte chemoattractant protein-1 release in patients with primary mixed dyslipidemia. J Cardiovasc Pharmacol. 2005;45(4):314–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/01.fjc.0000156821.50457.32.

    Article  CAS  PubMed  Google Scholar 

  52. Kowalski J, Okopień B, Madej A, Zieliński M, Belowski D, Kalina Z, et al. Effects of atorvastatin, simvastatin, and fenofibrate therapy on monocyte chemoattractant protein-1 secretion in patients with hyperlipidemia. Eur J Clin Pharmacol. 2003;59(3):189–93. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00228-003-0581-7.

    Article  CAS  PubMed  Google Scholar 

  53. Nakagomi A, Shibui T, Kohashi K, Kosugi M, Kusama Y, Atarashi H, et al. Differential effects of atorvastatin and pitavastatin on inflammation, insulin resistance, and the carotid intima-media thickness in patients with dyslipidemia. J Atheroscler Thromb. 2015;22(11):1158–71. https://doiorg.publicaciones.saludcastillayleon.es/10.5551/jat.29520.

    Article  CAS  PubMed  Google Scholar 

  54. Timmis A, Townsend N, Gale C, Grobbee R, Maniadakis N, Flather M, et al. European Society of Cardiology: cardiovascular disease statistics 2017. Eur Heart J. 2018;39(7):508–79.

    Article  PubMed  Google Scholar 

  55. Xia Y, Frangogiannis NG. MCP-1/CCL2 as a therapeutic target in myocardial infarction and ischemic cardiomyopathy. Inflamm Allergy Drug Targets. 2007;6(2):101–7. https://doiorg.publicaciones.saludcastillayleon.es/10.2174/187152807780832265.

    Article  CAS  PubMed  Google Scholar 

  56. Ono K, Matsumori A, Furukawa Y, Igata H, Shioi T, Matsushima K, et al. Prevention of myocardial reperfusion injury in rats by an antibody against monocyte chemotactic and activating factor/monocyte chemoattractant protein-1. Lab Invest. 1999;79(2):195–203.

    CAS  PubMed  Google Scholar 

  57. Salcedo R, Ponce ML, Young HA, Wasserman K, Ward JM, Kleinman HK, et al. Human endothelial cells express CCR2 and respond to MCP-1: direct role of MCP-1 in angiogenesis and tumor progression. Blood. 2000;96(1):34–40.

    Article  CAS  PubMed  Google Scholar 

  58. Sakai N, Wada T, Furuichi K, Shimizu K, Kokubo S, Hara A, et al. MCP-1/CCR2-dependent loop for fibrogenesis in human peripheral CD14-positive monocytes. J Leukoc Biol. 2006;79(3):555–63. https://doiorg.publicaciones.saludcastillayleon.es/10.1189/jlb.0305127.

    Article  CAS  PubMed  Google Scholar 

  59. Dewald O, Zymek P, Winkelmann K, Koerting A, Ren G, Abou-Khamis T, et al. CCL2/Monocyte chemoattractant Protein-1 regulates inflammatory responses critical to healing myocardial infarcts. Circ Res. 2005;96(8):881–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.RES.0000163017.13772.3a.

    Article  CAS  PubMed  Google Scholar 

  60. Morimoto H, Hirose M, Takahashi M, Kawaguchi M, Ise H, Kolattukudy PE, et al. MCP-1 induces cardioprotection against ischaemia/reperfusion injury: role of reactive oxygen species. Cardiovasc Res. 2008;78(3):554–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/cvr/cvn035.

    Article  CAS  PubMed  Google Scholar 

  61. Tarzami ST, Cheng R, Miao W, Kitsis RN, Berman JW. Chemokine expression in myocardial ischemia: MIP-2 dependent MCP-1 expression protects cardiomyocytes from cell death. J Mol Cell Cardiol. 2002;34(2):209–21. https://doiorg.publicaciones.saludcastillayleon.es/10.1006/jmcc.2001.1503.

    Article  CAS  PubMed  Google Scholar 

  62. Zhao Y, Xiong W, Li C, Zhao R, Lu H, Song S, et al. Hypoxia-induced signaling in the cardiovascular system: pathogenesis and therapeutic targets. Signal Transduct Target Ther. 2023;8(1):431. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41392-023-01652-9.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. Zhou L, Azfer A, Niu J, Graham S, Choudhury M, Adamski FM, et al. Monocyte chemoattractant protein-1 induces a novel transcription factor that causes cardiac myocyte apoptosis and ventricular dysfunction. Circ Res. 2006;98(9):1177–85. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.Res.0000220106.64661.71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  64. Zhang W, Zhu T, Chen L, Luo W, Chao J. MCP-1 mediates ischemia-reperfusion-induced cardiomyocyte apoptosis via MCPIP1 and CaSR. Am J Physiol Heart Circ Physiol. 2020;318(1):H59–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/ajpheart.00308.2019.

    Article  CAS  PubMed  Google Scholar 

  65. Younce CW, Kolattukudy PE. MCP-1 causes cardiomyoblast death via autophagy resulting from ER stress caused by oxidative stress generated by inducing a novel zinc-finger protein, MCPIP. Biochem J. 2010;426(1):43–53. https://doiorg.publicaciones.saludcastillayleon.es/10.1042/bj20090976.

    Article  CAS  PubMed  Google Scholar 

  66. Niu J, Jin Z, Kim H, Kolattukudy PE. MCP-1-induced protein attenuates post-infarct cardiac remodeling and dysfunction through mitigating NF-κB activation and suppressing inflammation-associated microRNA expression. Basic Res Cardiol. 2015;110(3):26. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00395-015-0483-8.

    Article  CAS  PubMed  Google Scholar 

  67. Morimoto H, Takahashi M, Izawa A, Ise H, Hongo M, Kolattukudy PE, et al. Cardiac overexpression of monocyte chemoattractant protein-1 in transgenic mice prevents cardiac dysfunction and remodeling after myocardial infarction. Circ Res. 2006;99(8):891–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.RES.0000246113.82111.2d.

    Article  CAS  PubMed  Google Scholar 

  68. McDermott DH, Yang Q, Kathiresan S, Cupples LA, Massaro JM, Keaney JF Jr., et al. CCL2 polymorphisms are associated with serum monocyte chemoattractant protein-1 levels and myocardial infarction in the Framingham Heart Study. Circulation. 2005;112(8):1113–20. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/circulationaha.105.543579.

    Article  CAS  PubMed  Google Scholar 

  69. Mosedale DE, Smith DJ, Aitken S, Schofield PM, Clarke SC, McNab D, et al. Circulating levels of MCP-1 and eotaxin are not associated with presence of atherosclerosis or previous myocardial infarction. Atherosclerosis. 2005;183(2):268–74. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.atherosclerosis.2004.11.028.

    Article  CAS  PubMed  Google Scholar 

  70. Iwai N, Kajimoto K, Kokubo Y, Okayama A, Miyazaki S, Nonogi H, et al. Assessment of genetic effects of polymorphisms in the MCP-1 gene on serum MCP-1 levels and myocardial infarction in Japanese. Circ J. 2006;70(7):805–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1253/circj.70.805.

    Article  CAS  PubMed  Google Scholar 

  71. Zhu Y, Hu C, Du Y, Zhang J, Liu J, Han H, et al. Significant association between admission serum monocyte chemoattractant protein-1 and early changes in myocardial function in patients with first ST-segment elevation myocardial infarction after primary percutaneous coronary intervention. BMC Cardiovasc Disord. 2019;19(1):107. https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12872-019-1098-z.

    Article  PubMed  PubMed Central  Google Scholar 

  72. Stumpf C, Petzi S, Seybold K, Wasmeier G, Arnold M, Raaz D, et al. Atorvastatin enhances interleukin-10 levels and improves cardiac function in rats after acute myocardial infarction. Clin Sci. 2009;116(1):45–52. https://doiorg.publicaciones.saludcastillayleon.es/10.1042/CS20080042.

    Article  CAS  Google Scholar 

  73. Yin R, Zhu J, Wang Z, Huang H, Qian J, Li Z, et al. Simvastatin attenuates cardiac isograft ischemia-reperfusion injury by down-regulating CC chemokine receptor-2 expression. J Thorac Cardiovasc Surg. 2007;134(3):780–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jtcvs.2007.05.001.

    Article  CAS  PubMed  Google Scholar 

  74. Wang Y, Zhang L, Zhao X, Yang W, Zhang R. An experimental study of the protective effect of simvastatin on sepsis-induced myocardial depression in rats. Biomed Pharmacother. 2017;94:705–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biopha.2017.07.105.

    Article  CAS  PubMed  Google Scholar 

  75. Mirjanic-Azaric B, Rizzo M, Sormaz L, Stojanovic D, Uletilovic S, Sodin-Semrl S, et al. Atorvastatin in stable angina patients lowers CCL2 and ICAM1 expression: pleiotropic evidence from plasma mRNA analyses. Clin Biochem. 2013;46(15):1526–31. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.clinbiochem.2013.06.006.

    Article  CAS  PubMed  Google Scholar 

  76. Tousoulis D, Antoniades C, Katsi V, Bosinakou E, Kotsopoulou M, Tsioufis C, et al. The impact of early administration of low-dose atorvastatin treatment on inflammatory process, in patients with unstable angina and low cholesterol level. Int J Cardiol. 2006;109(1):48–52. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ijcard.2005.05.055.

    Article  PubMed  Google Scholar 

  77. Xu ZM, Zhao SP, Li QZ, Nie S, Zhou HN. Atorvastatin reduces plasma MCP-1 in patients with acute coronary syndrome. Clin Chim Acta. 2003;338(1–2):17–24. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0009-8981(03)00321-8.

    Article  CAS  PubMed  Google Scholar 

  78. Lewandowski M, Kornacewicz-Jach Z, Millo B, Zielonka J, Czechowska M, Kaliszczak R, et al. The influence of low dose atorvastatin on inflammatory marker levels in patients with acute coronary syndrome and its potential clinical value. Cardiol J. 2008;15(4):357–64.

    PubMed  Google Scholar 

  79. Blanco-Colio LM, Martín-Ventura JL, de Teresa E, Farsang C, Gaw A, Gensini G, et al. Elevated ICAM-1 and MCP-1 plasma levels in subjects at high cardiovascular risk are diminished by atorvastatin treatment. Atorvastatin on inflammatory markers study: a substudy of achieve cholesterol targets fast with Atorvastatin Stratified Titration. Am Heart J. 2007;153(5):881–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ahj.2007.02.029.

    Article  CAS  PubMed  Google Scholar 

  80. Ansheles AA, Rvacheva AV, Sergienko IV. Effect of atorvastatin therapy on the level of CD34 + CD133 + CD309 + endothelial progenitor cells in patients with Coronary Heart Disease. Bull Exp Biol Med. 2017;163(1):133–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10517-017-3753-7.

    Article  CAS  PubMed  Google Scholar 

  81. Saklayen MG. The global epidemic of the metabolic syndrome. Curr Hypertens Rep. 2018;20(2):12. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s11906-018-0812-z.

    Article  PubMed  PubMed Central  Google Scholar 

  82. Haubner F, Lehle K, Münzel D, Schmid C, Birnbaum DE, Preuner JG. Hyperglycemia increases the levels of vascular cellular adhesion molecule-1 and monocyte-chemoattractant-protein-1 in the diabetic endothelial cell. Biochem Biophys Res Commun. 2007;360(3):560–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbrc.2007.06.044.

    Article  CAS  PubMed  Google Scholar 

  83. Dragomir E, Manduteanu I, Calin M, Gan AM, Stan D, Koenen RR, et al. High glucose conditions induce upregulation of fractalkine and monocyte chemotactic protein-1 in human smooth muscle cells. Thromb Haemost. 2008;100(6):1155–65.

    Article  CAS  PubMed  Google Scholar 

  84. Younce CW, Wang K, Kolattukudy PE. Hyperglycaemia-induced cardiomyocyte death is mediated via MCP-1 production and induction of a novel zinc-finger protein MCPIP. Cardiovasc Res. 2010;87(4):665–74. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/cvr/cvq102.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  85. Guan R, Purohit S, Wang H, Bode B, Reed JC, Steed RD, et al. Chemokine (C-C motif) ligand 2 (CCL2) in sera of patients with type 1 diabetes and diabetic complications. PLoS ONE. 2011;6(4):e17822. https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0017822.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Lin Y, Ye S, Chen Y, Li X, Yang Gw, Fan A, et al. The effect of simvastatin on the serum monocyte chemoattractant protein-1 and intracellular adhesion molecule-1 levels in diabetic rats. J Diabetes Complications. 2009;23(3):214–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jdiacomp.2007.09.003.

    Article  PubMed  Google Scholar 

  87. Fang SY, Roan JN, Lin Y, Hsu CH, Chang SW, Huang CC, et al. Rosuvastatin suppresses the oxidative response in the venous limb of an arteriovenous fistula and enhances the fistula blood flow in diabetic rats. J Vasc Res. 2014;51(2):81–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1159/000357619.

    Article  CAS  PubMed  Google Scholar 

  88. Calkin AC, Giunti S, Sheehy KJ, Chew C, Boolell V, Rajaram YS, et al. The HMG-CoA reductase inhibitor rosuvastatin and the angiotensin receptor antagonist candesartan attenuate atherosclerosis in an apolipoprotein E-deficient mouse model of diabetes via effects on advanced glycation, oxidative stress and inflammation. Diabetologia. 2008;51(9):1731–40. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s00125-008-1060-6.

    Article  CAS  PubMed  Google Scholar 

  89. Yu Y, Ohmori K, Chen Y, Sato C, Kiyomoto H, Shinomiya K, et al. Effects of pravastatin on progression of glucose intolerance and cardiovascular remodeling in a type II diabetes model. J Am Coll Cardiol. 2004;44(4):904–13. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jacc.2004.04.050.

    Article  CAS  PubMed  Google Scholar 

  90. Wesołowska A, Winiarska H, Owoc J, Borowska M, Domagała J, Mikołajczak PŁ, et al. Effects of low-dose atorvastatin on the peripheral blood mononuclear cell secretion of angiogenic factors in type 2 diabetes. Biomolecules. 2021;11(12). https://doiorg.publicaciones.saludcastillayleon.es/10.3390/biom11121885.

  91. Dworacka M, Krzyzagórska E, Wesołowska A, Zharmakhanova G, Iskakova S, Dworacki G. Circulating monocyte chemotactic protein 1 (MCP-1), vascular cell adhesion molecule 1 (VCAM-1) and angiogenin in type 2 diabetic patients treated with statins in low doses. Eur J Pharmacol. 2014;740:474–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ejphar.2014.06.041.

    Article  CAS  PubMed  Google Scholar 

  92. Krysiak R, Gdula-Dymek A, Ścieszka J, Okopień B. Anti-inflammatory and monocyte-suppressing effects of Simvastatin in patients with impaired fasting glucose. Basic Clin Pharmacol Toxicol. 2011;108(2):131–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1742-7843.2010.00633.x.

    Article  CAS  PubMed  Google Scholar 

  93. Mori H, Okada Y, Tanaka Y. Effects of pravastatin, atorvastatin, and rosuvastatin in patients with type 2 diabetes mellitus and hypercholesterolemia. Diabetol Int. 2013;4(2):117–25. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s13340-012-0103-x.

    Article  Google Scholar 

  94. Yamada S, Yanagawa T, Sasamoto K, Araki A, Miyao M, Yamanouchi T. Atorvastatin lowers plasma low-density lipoprotein cholesterol and C-reactive protein in Japanese type 2 diabetic patients. Metab Clin Exp. 2006;55(1):67–71. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.metabol.2005.07.017.

    Article  CAS  PubMed  Google Scholar 

  95. Takebayashi K, Matsumoto S, Wakabayashi S, Inukai Y, Matsutomo R, Aso Y, et al. The effect of low-dose atorvastatin on circulating monocyte chemoattractant protein-1 in patients with type 2 diabetes complicated by hyperlipidemia. Metab Clin Exp. 2005;54(9):1225–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.metabol.2005.04.008.

    Article  CAS  PubMed  Google Scholar 

  96. Rudemiller NP, Crowley SD. The role of chemokines in hypertension and consequent target organ damage. Pharmacol Res. 2017;119:404–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.phrs.2017.02.026.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Ishibashi M, Hiasa K, Zhao Q, Inoue S, Ohtani K, Kitamoto S, et al. Critical role of monocyte chemoattractant protein-1 receptor CCR2 on monocytes in hypertension-induced vascular inflammation and remodeling. Circ Res. 2004;94(9):1203–10. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.Res.0000126924.23467.A3.

    Article  CAS  PubMed  Google Scholar 

  98. Shen JZ, Morgan J, Tesch GH, Fuller PJ, Young MJ. CCL2-Dependent macrophage recruitment is critical for mineralocorticoid receptor-mediated Cardiac Fibrosis, inflammation, and blood pressure responses in male mice. Endocrinology. 2014;155(3):1057–66. https://doiorg.publicaciones.saludcastillayleon.es/10.1210/en.2013-1772.

    Article  CAS  PubMed  Google Scholar 

  99. Chan CT, Moore JP, Budzyn K, Guida E, Diep H, Vinh A, et al. Reversal of vascular macrophage accumulation and hypertension by a CCR2 antagonist in deoxycorticosterone/salt-treated mice. Hypertension. 2012;60(5):1207–12. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/hypertensionaha.112.201251.

    Article  CAS  PubMed  Google Scholar 

  100. Tucci M, Quatraro C, Frassanito MA, Silvestris F. Deregulated expression of monocyte chemoattractant protein-1 (MCP-1) in arterial hypertension: role in endothelial inflammation and atheromasia. J Hypertens. 2006;24(7):1307–18. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/01.hjh.0000234111.31239.c3.

    Article  CAS  PubMed  Google Scholar 

  101. Zhou MS, Tian R, Jaimes EA, Raij L. Combination therapy of amlodipine and atorvastatin has more beneficial vascular effects than monotherapy in salt-sensitive hypertension. Am J Hypertens. 2014;27(6):873–80. https://doiorg.publicaciones.saludcastillayleon.es/10.1093/ajh/hpt272.

    Article  CAS  PubMed  Google Scholar 

  102. Rabkin SW, Langer A, Ur E, Calciu CD, Leiter LA. Inflammatory biomarkers CRP, MCP-1, serum amyloid alpha and interleukin-18 in patients with HTN and dyslipidemia: impact of diabetes mellitus on metabolic syndrome and the effect of statin therapy. Hypertens Res. 2013;36(6):550–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/hr.2012.214.

    Article  CAS  PubMed  Google Scholar 

  103. Martín-Ventura JL, Mũoz-Garcia B, Blanco-Colio LM, Martín-Conejero A, Madrigal-Matute J, Vega M, et al. Treatment with amlodipine and atorvastatin has additive effect on blood and plaque inflammation in hypertensive patients with carotid atherosclerosis. Kidney Int. 2008;74(SUPPL 111):S71–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/ki.2008.521.

    Article  CAS  Google Scholar 

  104. Kwang KK, Quon MJ, Seung HH, Chung WJ, Jeong YA, Seo YH, et al. Additive beneficial effects of losartan combined with simvastatin in the treatment of hypercholesterolemic, hypertensive patients. Circulation. 2004;110(24):3687–92. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.CIR.0000143085.86697.13.

    Article  CAS  Google Scholar 

  105. Inoue T, Matsuoka H, Higashi Y, Ueda S-i, Sata M, Shimada K-e, et al. Flow-Mediated Vasodilation as a diagnostic modality for vascular failure. Hypertens Res. 2008;31(12):2105–13. https://doiorg.publicaciones.saludcastillayleon.es/10.1291/hypres.31.2105.

    Article  PubMed  Google Scholar 

  106. Kai H, Kudo H, Takayama N, Yasuoka S, Kajimoto H, Imaizumi T. Large blood pressure variability and hypertensive cardiac remodeling–role of cardiac inflammation. Circ J. 2009;73(12):2198–203. https://doiorg.publicaciones.saludcastillayleon.es/10.1253/circj.cj-09-0741.

    Article  PubMed  Google Scholar 

  107. Takayama N, Kai H, Kudo H, Yasuoka S, Mori T, Anegawa T, et al. Simvastatin prevents large blood pressure variability induced aggravation of cardiac hypertrophy in hypertensive rats by inhibiting RhoA/Ras-ERK pathways. Hypertens Res. 2011;34(3):341–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/hr.2010.229.

    Article  CAS  PubMed  Google Scholar 

  108. Global regional. Lancet Neurol. 2019;18(5):459–80. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s1474-4422(18)30499-x. and national burden of neurological disorders, 1990–2016: a systematic analysis for the Global Burden of Disease Study 2016.

  109. Campbell BCV, Khatri P, Stroke. Lancet. 2020;396(10244):129–42. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0140-6736(20)31179-x.

    Article  PubMed  Google Scholar 

  110. Raivich G, Banati R. Brain microglia and blood-derived macrophages: molecular profiles and functional roles in multiple sclerosis and animal models of autoimmune demyelinating disease. Brain Res Brain Res Rev. 2004;46(3):261–81. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.brainresrev.2004.06.006.

    Article  CAS  PubMed  Google Scholar 

  111. Wang X, Yue TL, Barone FC, Feuerstein GZ. Monocyte chemoattractant protein-1 messenger RNA expression in rat ischemic cortex. Stroke. 1995;26(4):661–5. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.str.26.4.661. discussion 5–6.

    Article  CAS  PubMed  Google Scholar 

  112. Hughes PM, Allegrini PR, Rudin M, Perry VH, Mir AK, Wiessner C. Monocyte chemoattractant protein-1 deficiency is protective in a murine stroke model. J Cereb Blood Flow Metab. 2002;22(3):308–17. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/00004647-200203000-00008.

    Article  CAS  PubMed  Google Scholar 

  113. Chen Y, Hallenbeck JM, Ruetzler C, Bol D, Thomas K, Berman NE, et al. Overexpression of monocyte chemoattractant protein 1 in the brain exacerbates ischemic brain injury and is associated with recruitment of inflammatory cells. J Cereb Blood Flow Metab. 2003;23(6):748–55. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/01.Wcb.0000071885.63724.20.

    Article  PubMed  Google Scholar 

  114. Worthmann H, Tryc AB, Goldbecker A, Ma YT, Tountopoulou A, Hahn A, et al. The temporal profile of inflammatory markers and mediators in blood after acute ischemic stroke differs depending on stroke outcome. Cerebrovasc Dis. 2010;30(1):85–92. https://doiorg.publicaciones.saludcastillayleon.es/10.1159/000314624.

    Article  CAS  PubMed  Google Scholar 

  115. Georgakis MK, Malik R, Björkbacka H, Pana TA, Demissie S, Ayers C, et al. Circulating Monocyte chemoattractant Protein-1 and risk of stroke: Meta-Analysis of Population-Based studies Involving 17 180 individuals. Circ Res. 2019;125(8):773–82. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/circresaha.119.315380.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  116. Tuttolomondo A, Di Raimondo D, Pecoraro R, Maida C, Arnao V, Della Corte V, et al. Early high-dosage atorvastatin treatment improved serum Immune-inflammatory markers and functional outcome in Acute ischemic strokes classified as large artery atherosclerotic stroke: a Randomized Trial. Med (Baltim). 2016;95(13):e3186. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/md.0000000000003186.

    Article  CAS  Google Scholar 

  117. Tziomalos K, Giampatzis V, Bouziana SD, Spanou M, Kostaki S, Papadopoulou M, et al. Comparative effects of more versus less aggressive treatment with statins on the long-term outcome of patients with acute ischemic stroke. Atherosclerosis. 2015;243(1):65–70. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.atherosclerosis.2015.08.043.

    Article  CAS  PubMed  Google Scholar 

  118. Buttmann M, Lorenz A, Weishaupt A, Rieckmann P. Atorvastatin partially prevents an inflammatory barrier breakdown of cultured human brain endothelial cells at a pharmacologically relevant concentration. J Neurochem. 2007;102(4):1001–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1471-4159.2007.04563.x.

    Article  CAS  PubMed  Google Scholar 

  119. Zhang P, Zhang X, Huang Y, Chen J, Shang W, Shi G, et al. Atorvastatin alleviates microglia-mediated neuroinflammation via modulating the microbial composition and the intestinal barrier function in ischemic stroke mice. Free Radic Biol Med. 2021;162:104–17. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.freeradbiomed.2020.11.032.

    Article  CAS  PubMed  Google Scholar 

  120. Sironi L, Banfi C, Brioschi M, Gelosa P, Guerrini U, Nobili E, et al. Activation of NF-kB and ERK1/2 after permanent focal ischemia is abolished by simvastatin treatment. Neurobiol Dis. 2006;22(2):445–51. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.nbd.2005.12.004.

    Article  CAS  PubMed  Google Scholar 

  121. Sironi L, Gianazza E, Gelosa P, Guerrini U, Nobili E, Gianella A, et al. Rosuvastatin, but not simvastatin, provides end-organ protection in stroke-prone rats by antiinflammatory effects. Arterioscler Thromb Vasc Biol. 2005;25(3):598–603. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.ATV.0000157145.98200.55.

    Article  CAS  PubMed  Google Scholar 

  122. Cheung BM, Lauder IJ, Lau CP, Kumana CR. Meta-analysis of large randomized controlled trials to evaluate the impact of statins on cardiovascular outcomes. Br J Clin Pharmacol. 2004;57(5):640–51. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1365-2125.2003.02060.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  123. Yang XH, Zhang BL, Cheng Y, Fu SK, Jin HM. Statin use and the risk of CVD events, stroke, and all-cause mortality in patients with diabetes: a systematic review and meta-analysis. Nutr Metab Cardiovasc Dis. 2022;32(11):2470–82. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.numecd.2022.07.018.

    Article  CAS  PubMed  Google Scholar 

  124. Kakavand H, Aghakouchakzadeh M, Shahi A, Virani SS, Dixon DL, Van Tassell BW, et al. A stepwise approach to prescribing novel lipid-lowering medications. J Clin Lipidol. 2022;16(6):822–32. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jacl.2022.10.003.

    Article  PubMed  Google Scholar 

  125. Wang WZ, et al. A novel small-molecule PCSK9 inhibitor E28362 ameliorates hyperlipidemia and atherosclerosis. Acta Pharmacol Sin. 2024;45(10):2119–33. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/s41401-024-01305-9.

  126. Sahebkar A, Watts GF. New LDL-cholesterol lowering therapies: Pharmacology, clinical trials, and relevance to acute coronary syndromes. Clin Ther. 2013;35(8):1082–98. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.clinthera.2013.06.019.

    Article  CAS  PubMed  Google Scholar 

  127. Sahebkar A, Watts GF. New therapies targeting apoB metabolism for high-risk patients with inherited dyslipidaemias: what can the clinician expect? Cardiovasc Drugs Ther. 2013;27(6):559–67. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10557-013-6479-4.

    Article  CAS  PubMed  Google Scholar 

  128. Jougasaki M, Ichiki T, Takenoshita Y, Setoguchi M. Statins suppress interleukin-6-induced monocyte chemo-attractant protein-1 by inhibiting Janus kinase/signal transducers and activators of transcription pathways in human vascular endothelial cells. Br J Pharmacol. 2010;159(6):1294–303. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1476-5381.2009.00612.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  129. Wang Y, Chang H, Zou J, Jin X, Qi Z. The effect of atorvastatin on mRNA levels of inflammatory genes expression in human peripheral blood lymphocytes by DNA microarray. Biomed Pharmacother. 2011;65(2):118–22. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biopha.2010.12.005.

    Article  CAS  PubMed  Google Scholar 

  130. Tanimoto A, Murata Y, Wang KY, Tsutsui M, Kohno K, Sasaguri Y. Monocyte chemoattractant protein-1 expression is enhanced by granulocyte-macrophage colony-stimulating factor via Jak2-Stat5 signaling and inhibited by atorvastatin in human monocytic U937 cells. J Biol Chem. 2008;283(8):4643–51. https://doiorg.publicaciones.saludcastillayleon.es/10.1074/jbc.M708853200.

    Article  CAS  PubMed  Google Scholar 

  131. Grip O, Janciauskiene S, Lindgren S. Atorvastatin activates PPAR-gamma and attenuates the inflammatory response in human monocytes. Inflamm Res. 2002;51(2):58–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/bf02684000.

    Article  CAS  PubMed  Google Scholar 

  132. Zanette DL, van Eggermond MCJA, Haasnoot G, van den Elsen PJ. Simvastatin reduces CCL2 expression in monocyte-derived cells by induction of a repressive CCL2 chromatin state. Hum Immunol. 2014;75(1):10–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.humimm.2013.09.016.

    Article  CAS  PubMed  Google Scholar 

  133. Wong B, Lumma WC, Smith AM, Sisko JT, Wright SD, Cai TQ. Statins suppress THP-1 cell migration and secretion of matrix metalloproteinase 9 by inhibiting geranylgeranylation. J Leukoc Biol. 2001;69(6):959–62.

    Article  CAS  PubMed  Google Scholar 

  134. Pasceri V, Cheng JS, Willerson JT, Yeh ET. Modulation of C-reactive protein-mediated monocyte chemoattractant protein-1 induction in human endothelial cells by anti-atherosclerosis drugs. Circulation. 2001;103(21):2531–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.cir.103.21.2531.

    Article  CAS  PubMed  Google Scholar 

  135. Romano M, Diomede L, Sironi M, Massimiliano L, Sottocorno M, Polentarutti N, et al. Inhibition of monocyte chemotactic protein-1 synthesis by statins. Lab Invest. 2000;80(7):1095–100. https://doiorg.publicaciones.saludcastillayleon.es/10.1038/labinvest.3780115.

    Article  CAS  PubMed  Google Scholar 

  136. Xu Y, Du HP, Li J, Xu R, Wang YL, You SJ, et al. Statins upregulate cystathionine γ-lyase transcription and H 2S generation via activating akt signaling in macrophage. Pharmacol Res. 2014;87:18–25. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.phrs.2014.06.006.

    Article  CAS  PubMed  Google Scholar 

  137. Sonoki K, Iwase M, Ohdo S, Ieiri I, Takata Y, Kitazono T. Statin inhibits the expression of secretory phospholipase A2 and subsequent monocyte chemoattractant protein-1 in human endothelial cells. J Cardiovasc Pharmacol. 2014;64(6):489–96. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/FJC.0000000000000147.

    Article  CAS  PubMed  Google Scholar 

  138. Kaneyuki U, Ueda S, Yamagishi S, Kato S, Fujimura T, Shibata R, et al. Pitavastatin inhibits lysophosphatidic acid-induced proliferation and monocyte chemoattractant protein-1 expression in aortic smooth muscle cells by suppressing rac-1-mediated reactive oxygen species generation. Vascul Pharmacol. 2007;46(4):286–92. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.vph.2006.11.002.

    Article  CAS  PubMed  Google Scholar 

  139. Hiraoka M, Nitta N, Nagai M, Shimokado K, Yoshida M. MCP-1-induced enhancement of THP-1 adhesion to vascular endothelium was modulated by HMG-CoA reductase inhibitor through RhoA GTPase-, but not ERK1/2-dependent pathway. Life Sci. 2004;75(11):1333–41. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.lfs.2004.02.028.

    Article  CAS  PubMed  Google Scholar 

  140. Zhao J, Natarajan SK, Chronos N, Singh JP. Cerivastatin represses atherogenic gene expression through the induction of KLF2 via isoprenoid metabolic pathways. Cell Mol Biol Lett. 2015;20(5):825–39. https://doiorg.publicaciones.saludcastillayleon.es/10.1515/cmble-2015-0049.

    Article  PubMed  Google Scholar 

  141. Brandes RP, Beer S, Ha T, Busse R. Withdrawal of cerivastatin induces monocyte chemoattractant protein 1 and tissue factor expression in cultured vascular smooth muscle cells. Arterioscler Thromb Vasc Biol. 2003;23(10):1794–800. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.Atv.0000092126.25380.Bc.

    Article  CAS  PubMed  Google Scholar 

  142. Zhang Y, Ingram DA, Murphy MP, Saadatzadeh MR, Mead LE, Prater DN, et al. Release of proinflammatory mediators and expression of proinflammatory adhesion molecules by endothelial progenitor cells. Am J Physiol Heart Circ Physiol. 2009;296(5):H1675–82. https://doiorg.publicaciones.saludcastillayleon.es/10.1152/ajpheart.00665.2008.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  143. Ekstrand M, Trajkovska MG, Perman-Sundelin J, Fogelstrand P, Adiels M, Johansson M, et al. Imaging of intracellular and extracellular ROS levels in atherosclerotic mouse aortas ex vivo: effects of lipid lowering by diet or atorvastatin. PLoS ONE. 2015;10(6). https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0130898.

  144. Fukuda K, Matsumura T, Senokuchi T, Ishii N, Kinoshita H, Yamada S, et al. Statins meditate anti-atherosclerotic action in smooth muscle cells by peroxisome proliferator-activated receptor-γ activation. Biochem Biophys Res Commun. 2015;457(1):23–30. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbrc.2014.12.063.

    Article  CAS  PubMed  Google Scholar 

  145. Mitani H, Egashira K, Kimura M. HMG-CoA reductase inhibitor, fluvastatin, has cholesterol-lowering independent direct effects on atherosclerotic vessels in high cholesterol diet-fed rabbits. Pharmacol Res. 2003;48(5):417–27. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s1043-6618(03)00184-1.

    Article  CAS  PubMed  Google Scholar 

  146. Katsuki S, Matoba T, Nakashiro S, Sato K, Koga JI, Nakano K, et al. Nanoparticle-mediated delivery of pitavastatin inhibits atherosclerotic plaque destabilization/rupture in mice by regulating the recruitment of inflammatory monocytes. Circulation. 2014;129(8):896–906. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/CIRCULATIONAHA.113.002870.

    Article  CAS  PubMed  Google Scholar 

  147. Suzuki H, Kobayashi H, Sato F, Yonemitsu Y, Nakashima Y, Sueishi K. Plaque-stabilizing effect of pitavastatin in Watanabe heritable hyperlipidemic (WHHL) rabbits. J Atheroscler Thromb. 2003;10(2):109–16. https://doiorg.publicaciones.saludcastillayleon.es/10.5551/jat.10.109.

    Article  CAS  PubMed  Google Scholar 

  148. Kitamoto S, Nakano K, Hirouchi Y, Kohjimoto Y, Kitajima S, Usui M, et al. Cholesterol-lowering independent regression and stabilization of atherosclerotic lesions by pravastatin and by antimonocyte chemoattractant protein-1 therapy in nonhuman primates. Arterioscler Thromb Vasc Biol. 2004;24(8):1522–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.ATV.0000134518.27241.da.

    Article  CAS  PubMed  Google Scholar 

  149. Zelvyte I, Dominaitiene R, Crisby M, Janciauskiene S. Modulation of inflammatory mediators and PPARgamma and NFkappaB expression by pravastatin in response to lipoproteins in human monocytes in vitro. Pharmacol Res. 2002;45(2):147–54. https://doiorg.publicaciones.saludcastillayleon.es/10.1006/phrs.2001.0922.

    Article  CAS  PubMed  Google Scholar 

  150. Kesavan M, Sarath TS, Kannan K, Suresh S, Gupta P, Vijayakaran K, et al. Atorvastatin restores arsenic-induced vascular dysfunction in rats: modulation of nitric oxide signaling and inflammatory mediators. Toxicol Appl Pharmacol. 2014;280(1):107–16. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.taap.2014.07.008.

    Article  CAS  PubMed  Google Scholar 

  151. Kong Q, Liu M, Li Y, Zhu Q, Su G. Effect of evolocumab on the progression and stability of atherosclerotic plaques as evaluated by grayscale and iMAP-IVUS. Ann Cardiothorac Surg. 2020;9(5):3078–88. https://doiorg.publicaciones.saludcastillayleon.es/10.21037/apm-20-690.

    Article  Google Scholar 

  152. Stasinopoulou M, Kadoglou NPE, Christodoulou E, Paronis E, Kostomitsopoulos NG, Valsami G, et al. Statins’ Withdrawal induces atherosclerotic plaque destabilization in animal Model-A rebound stimulation of inflammation. J Cardiovasc Pharmacol Ther. 2019;24(4):377–86. https://doiorg.publicaciones.saludcastillayleon.es/10.1177/1074248419838499.

    Article  CAS  PubMed  Google Scholar 

  153. Hellberg S, Sippola S, Liljenbäck H, Virta J, Silvola JMU, Ståhle M, et al. Effects of atorvastatin and diet interventions on atherosclerotic plaque inflammation and [18F]FDG uptake in Ldlr–/–Apob100/100 mice. Atherosclerosis. 2017;263:369–76. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.atherosclerosis.2017.04.004.

    Article  CAS  PubMed  Google Scholar 

  154. Bustos C, Hernández-Presa MA, Ortego M, Tuñón J, Ortega L, Pérez F, et al. HMG-CoA reductase inhibition by atorvastatin reduces neointimal inflammation in a rabbit model of atherosclerosis. J Am Coll Cardiol. 1998;32(7):2057–64. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0735-1097(98)00487-2.

    Article  CAS  PubMed  Google Scholar 

  155. Martínez-González J, Alfón J, Berrozpe M, Badimon L. HMG-CoA reductase inhibitors reduce vascular monocyte chemotactic protein-1 expression in early lesions from hypercholesterolemic swine independently of their effect on plasma cholesterol levels. Atherosclerosis. 2001;159(1):27–33. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S0021-9150(01)00469-5.

    Article  PubMed  Google Scholar 

  156. Wang XL, Sun W, Zhou YL, Li L. Rosuvastatin stabilizes atherosclerotic plaques by reducing CD40L overexpression-induced downregulation of P4Hα1 in ApoE–/– mice. Int J Biochem Cell Biol. 2018;105:70–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biocel.2018.10.002.

    Article  CAS  PubMed  Google Scholar 

  157. Lin PY, Lee FY, Wallace CG, Chen KH, Kao GS, Sung PH, et al. The therapeutic effect of rosuvastatin and propylthiouracil on ameliorating high-cholesterol diet-induced rabbit aortic atherosclerosis and stiffness. Int J Cardiol. 2017;227:938–49. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ijcard.2016.09.040.

    Article  PubMed  Google Scholar 

  158. Li W, Huang HY, Wu ZY, Xie FQ, Zhang XR, Guan P. [Rosuvastatin attenuates vascular endothelial adhesiveness in apolipoprotein E-deficient mice]. Zhonghua Xin xue guan bing za zhi. 2009;37(1):69–72.

    PubMed  Google Scholar 

  159. Li W, Asagami T, Matsushita H, Lee KH, Tsao PS. Rosuvastatin attenuates monocyte-endothelial cell interactions and vascular free radical production in hypercholesterolemic mice. J Pharmacol Exp Ther. 2005;313(2):557–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1124/jpet.104.080002.

    Article  CAS  PubMed  Google Scholar 

  160. Han KH, Ryu J, Hong KH, Ko J, Pak YK, Kim JB, et al. HMG-CoA reductase inhibition reduces monocyte CC chemokine receptor 2 expression and monocyte chemoattractant protein-1-mediated monocyte recruitment in vivo. Circulation. 2005;111(11):1439–47. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.Cir.0000158484.18024.1f.

    Article  CAS  PubMed  Google Scholar 

  161. Kanshana JS, Khanna V, Singh V, Jain M, Misra A, Kumar S, et al. Progression and characterization of the Accelerated atherosclerosis in Iliac artery of New Zealand white rabbits: Effect of Simvastatin. J Cardiovasc Pharmacol. 2017;69(5):314–25. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/FJC.0000000000000477.

    Article  CAS  PubMed  Google Scholar 

  162. Tsuchiya A, Nagotani S, Hayashi T, Deguchi K, Sehara Y, Yamashita T, et al. Macrophage infiltration, lectin-like oxidized-LDL receptor-1, and monocyte chemoattractant protein-1 are reduced by chronic HMG-CoA reductase inhibition. Curr Neurovasc Res. 2007;4(4):268–73. https://doiorg.publicaciones.saludcastillayleon.es/10.2174/156720207782446333.

    Article  CAS  PubMed  Google Scholar 

  163. Bea F, Blessing E, Shelley MI, Shultz JM, Rosenfeld ME. Simvastatin inhibits expression of tissue factor in advanced atherosclerotic lesions of apolipoprotein E deficient mice independently of lipid lowering: potential role of simvastatin-mediated inhibition of Egr-1 expression and activation. Atherosclerosis. 2003;167(2):187–94. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/s0021-9150(02)00387-8.

    Article  CAS  PubMed  Google Scholar 

  164. Ikewaki K, Terao Y, Ozasa H, Nakada Y, Tohyama JI, Inoue Y, et al. Effects of atorvastatin on nuclear magnetic resonance-defined lipoprotein subclasses and inflammatory markers in patients with hypercholesterolemia. J Atheroscler Thromb. 2009;16(1):51–6. https://doiorg.publicaciones.saludcastillayleon.es/10.5551/jat.E563.

    Article  CAS  PubMed  Google Scholar 

  165. Martín-Ventura JL, Blanco-Colio LM, Gómez-Hernández A, Muñoz-García B, Vega M, Serrano J, et al. Intensive treatment with atorvastatin reduces inflammation in mononuclear cells and human atherosclerotic lesions in one month. Stroke. 2005;36(8):1796–800. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/01.STR.0000174289.34110.b0.

    Article  CAS  PubMed  Google Scholar 

  166. Garlichs CD, John S, Schmeisser A, Eskafi S, Stumpf C, Karl M, et al. Upregulation of CD40 and CD40 ligand (CD154) in patients with moderate hypercholesterolemia. Circulation. 2001;104(20):2395–400. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/hc4501.099312.

    Article  CAS  PubMed  Google Scholar 

  167. Barale C, Frascaroli C, Senkeev R, Cavalot F, Russo I. Simvastatin effects on inflammation and platelet activation markers in Hypercholesterolemia. BioMed Res Int. 2018;2018. https://doiorg.publicaciones.saludcastillayleon.es/10.1155/2018/6508709.

  168. Du RX, Ye P, Yan GT, Deng ZH, Liang WT, Guo ZK, et al. The effect of rosuvastatin therapy on CCR2 expression in mononuclear cells and its upstream pathway. Zhongguo Ying Yong Sheng Li Xue Za Zhi. 2016;32(3):202–6. https://doiorg.publicaciones.saludcastillayleon.es/10.13459/j.cnki.cjap.2016.03.003.

    Article  PubMed  Google Scholar 

  169. Rosenson RS, Tangney CC, Levine DM, Parker TS, Gordon BR. Association between reduced low density lipoprotein oxidation and inhibition of monocyte chemoattractant protein-1 production in statin-treated subjects. J Lab Clin Med. 2005;145(2):83–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.lab.2004.11.012.

    Article  CAS  PubMed  Google Scholar 

  170. Nomura S, Shouzu A, Omoto S, Inami N, Shimazu T, Satoh D, et al. Effects of pitavastatin on monocyte chemoattractant protein-1 in hyperlipidemic patients. Blood Coagul Fibrinolysis. 2009;20(6):440–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/MBC.0b013e32832e0618.

    Article  CAS  PubMed  Google Scholar 

  171. Leu HB, Wu CC, Wu TC, Lin SJ, Chen JW. Fluvastatin reduces oxidative stress, decreases serum monocyte chemotactic protein-1 level and improves endothelial function in patients with hypercholesterolemia. J Formos Med Assoc. 2004;103(12):914–20.

    CAS  PubMed  Google Scholar 

  172. Blomqvist HM, Olsson AG. Monocyte chemoattractant protein-1 and CC-chemokine receptor-2 in severe hypercholesterolaemia. Scand J Clin Lab Invest. 2003;63(7–8):513–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1080/00365510310003274.

    Article  CAS  PubMed  Google Scholar 

  173. D’Addato S, Cicero AFG, Rosticci M, Reggi A, Cristino S, Dormi A, et al. Serum proinflammatory chemokines in healthy elderly taking or not taking simvastatin - data from the Brisighella Heart Study. Adv Clin Exp Med. 2014;23(5):723–8. https://doiorg.publicaciones.saludcastillayleon.es/10.17219/acem/37230.

    Article  PubMed  Google Scholar 

  174. Hovland A, Aagnes A, Brekke OL, Flage JH, Lappegard KT. No evidence of impaired endothelial function or altered inflammatory state in patients with familial hypercholesterolemia treated with statins. J Clin Lipidol. 2010;4(4):288–92. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jacl.2010.02.011.

    Article  PubMed  Google Scholar 

  175. Nenseter MS, Aukrust P, Ose L, Holven KB. Low level of inflammatory marker in hyperhomocysteinemic patients on statin therapy. Scand J Clin Lab Invest. 2014;74(1):1–7. https://doiorg.publicaciones.saludcastillayleon.es/10.3109/00365513.2013.854926.

    Article  CAS  PubMed  Google Scholar 

  176. Shen Y, Wu H, Wang C, Shao H, Huang H, Jing H, et al. Simvastatin attenuates cardiopulmonary bypass-induced myocardial inflammatory injury in rats by activating peroxisome proliferator-activated receptor γ. Eur J Pharmacol. 2010;649(1–3):255–62. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.ejphar.2010.08.058.

    Article  CAS  PubMed  Google Scholar 

  177. Egashira K, Ni W, Inoue S, Kataoka C, Kitamoto S, Koyanagi M, et al. Pravastatin attenuates cardiovascular inflammatory and proliferative changes in a rat model of chronic inhibition of nitric oxide synthesis by its cholesterol-lowering independent actions. Hypertens Res. 2000;23(4):353–8. https://doiorg.publicaciones.saludcastillayleon.es/10.1291/hypres.23.353.

    Article  CAS  PubMed  Google Scholar 

  178. Nagaoka K, Matoba T, Mao Y, Nakano Y, Ikeda G, Egusa S, et al. A new therapeutic modality for acute myocardial infarction: nanoparticle-mediated delivery of pitavastatin induces cardioprotection from ischemia-reperfusion injury via activation of PI3K/Akt pathway and anti-inflammation in a rat model. PLoS ONE. 2015;10(7). https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0132451.

  179. Yin R, Zhu J, Shao H, Cheng X, Feng X, Li Z, et al. Inhibition of chemokine receptor CCR2 and CCR5 expression contributes to simvastatin-induced attenuation of cardiac allograft vasculopathy. J Heart Lung Transpl. 2007;26(5):485–93. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.healun.2007.02.006.

    Article  Google Scholar 

  180. Jasim AE, Majeed SA, Hadi NR, Amber KI, Jawad H. Atorvastatin reload down regulates TLR-2 expression and reduces the acute inflammatory response in patients undergoing percutaneous coronary intervention. Syst Rev Pharm. 2020;11(2):347–55. https://doiorg.publicaciones.saludcastillayleon.es/10.5530/srp.2020.2.52.

    Article  CAS  Google Scholar 

  181. Yang J, Liu C, Zhang L, Liu Y, Guo A, Shi H, et al. Intensive atorvastatin therapy attenuates the inflammatory responses in Monocytes of patients with unstable angina undergoing percutaneous coronary intervention via peroxisome proliferator-activated receptor γ activation. Inflammation. 2015;38(4):1415–23. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10753-015-0116-2.

    Article  CAS  PubMed  Google Scholar 

  182. Mirjanic-Azaric B, Rizzo M, Jürgens G, Hallstroem S, Srdic S, Marc J, et al. Atorvastatin treatment increases plasma bilirubin but not HMOX1 expression in stable angina patients. Scand J Clin Lab Invest. 2015;75(5):382–9. https://doiorg.publicaciones.saludcastillayleon.es/10.3109/00365513.2015.1031691.

    Article  CAS  PubMed  Google Scholar 

  183. Sukegawa H, Maekawa Y, Yuasa S, Anzai A, Kodaira M, Takei M, et al. Intensive statin therapy stabilizes C-reactive protein, but not chemokine in stable coronary artery disease treated with an everolimus-eluting stent. Coron Artery Dis. 2016;27(5):405–11. https://doiorg.publicaciones.saludcastillayleon.es/10.1097/MCA.0000000000000375.

    Article  PubMed  Google Scholar 

  184. Wang Z, Dai H, Xing M, Yu Z, Lin X, Wang S, et al. Effect of a single high loading dose of rosuvastatin on percutaneous coronary intervention for acute coronary syndromes. J Cardiovasc Pharmacol Ther. 2013;18(4):327–33. https://doiorg.publicaciones.saludcastillayleon.es/10.1177/1074248412474346.

    Article  CAS  PubMed  Google Scholar 

  185. Li ZM, Ma JF, Wang LN. Influence of atorvastatin on the expression of monocyte chemoattractant protein-1 in peritoneal mesothelial cells by high glucose. Nat Med J China. 2007;87(38):2677–80.

    CAS  Google Scholar 

  186. Feng B, Xu L, Wang H, Yan X, Xue J, Liu F, et al. Atorvastatin exerts its anti-atherosclerotic effects by targeting the receptor for advanced glycation end products. Biochim Biophys Acta Mol Basis Dis. 2011;1812(9):1130–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbadis.2011.05.007.

    Article  CAS  Google Scholar 

  187. Krysiak R, Gdula-Dymek A, Marek B, Okopień B. Comparison of the effects of hypolipidaemic treatment on monocyte proinflammatory cytokine release in men and women with type 2 diabetes and atherogenic dyslipidaemia. Endokrynol Pol. 2015;66(3):224–30. https://doiorg.publicaciones.saludcastillayleon.es/10.5603/EP.2015.0029.

    Article  PubMed  Google Scholar 

  188. Almquist T, Jacobson SH, Mobarrez F, Näsman P, Hjemdahl P. Lipid-lowering treatment and inflammatory mediators in diabetes and chronic kidney disease. Eur J Clin Invest. 2014;44(3):276–84. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/eci.12230.

    Article  CAS  PubMed  Google Scholar 

  189. Zhao J, Cheng Q, Liu Y, Yang G, Wang X. Atorvastatin alleviates early hypertensive renal damage in spontaneously hypertensive rats. Biomed Pharmacother. 2019;109:602–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.biopha.2018.10.165.

    Article  CAS  PubMed  Google Scholar 

  190. Bespalova ID, Ryazantseva NV, Kalyuzhin VV, Murashev BY, Osikhov IA, Medyantsev YA. Effect of atorvastatin on pro-inflammatory status (in vivo in vitro) in patients with essential hypertension and metabolic syndrome. Kardiologiya. 2014;54(8):37–43. https://doiorg.publicaciones.saludcastillayleon.es/10.18565/cardio.2014.8.37-43.

    Article  CAS  PubMed  Google Scholar 

  191. Loughrey BV, McGinty A, Young IS, McCance DR, Powell LA. Increased circulating CC chemokine levels in the metabolic syndrome are reduced by low-dose atorvastatin treatment: evidence from a randomized controlled trial. Clin Endocrinol. 2013;79(6):800–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/cen.12113.

    Article  CAS  Google Scholar 

  192. Lobo SMDV, Quinto BMR, Oyama L, Nakamichi R, Ribeiro AB, Zanella MT, et al. TNF-α modulates statin effects on secretion and expression of MCP-1, PAI-1 and adiponectin in 3T3-L1 differentiated adipocytes. Cytokine. 2012;60(1):150–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cyto.2012.04.039.

    Article  CAS  PubMed  Google Scholar 

  193. Singh P, Zhang Y, Sharma P, Covassin N, Soucek F, Friedman PA, et al. Statins decrease leptin expression in human white adipocytes. Physiol Rep. 2018;6(2). https://doiorg.publicaciones.saludcastillayleon.es/10.14814/phy2.13566.

  194. Wu ZH, Chen YQ, Zhao SP. Simvastatin inhibits ox-LDL-induced inflammatory adipokines secretion via amelioration of ER stress in 3T3-L1 adipocyte. Biochem Biophys Res Commun. 2013;432(2):365–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.bbrc.2013.01.094.

    Article  CAS  PubMed  Google Scholar 

  195. Fernandes KS, Béla SR, Andrade VL, de Moraes TF, de Assis Martins-Filho O, Sandrim VC. Simvastatin does not reduce chemokine production in obesity without comorbidities. Inflammation. 2015;38(3):1297–301. https://doiorg.publicaciones.saludcastillayleon.es/10.1007/s10753-014-0100-2.

    Article  CAS  PubMed  Google Scholar 

  196. Li J, Li JJ, He JG, Nan JL, Guo YL, Xiong CM. Atorvastatin decreases C-reactive protein-induced inflammatory response in pulmonary artery smooth muscle cells by inhibiting nuclear factor-kappab pathway. Cardiovasc Ther. 2010;28(1):8–14. https://doiorg.publicaciones.saludcastillayleon.es/10.1111/j.1755-5922.2009.00103.x.

    Article  CAS  PubMed  Google Scholar 

  197. Zhang WH, Lu WX, Zhang YJ, Ji YQ, Liu CP, Li G. Simvastatin prevents the development of pulmonary hypertension in the rats through reduction of inflammation. Nat Med J China. 2009;89(12):855–9. https://doiorg.publicaciones.saludcastillayleon.es/10.3760/cma.j.issn.0376-2491.2009.12.016.

    Article  CAS  Google Scholar 

  198. Sáez CG, Pereira-Flores K, Ebensperger R, Panes O, Massardo T, Hidalgo P, et al. Atorvastatin reduces the proadhesive and prothrombotic endothelial cell phenotype induced by cocaine and plasma from cocaine consumers in vitro. Arterioscler Thromb Vasc Biol. 2014;34(11):2439–48. https://doiorg.publicaciones.saludcastillayleon.es/10.1161/ATVBAHA.114.304535.

    Article  CAS  PubMed  Google Scholar 

  199. Feng Y, Lei B, Zhang F, Niu L, Zhang H, Zhang M. Anti-inflammatory effects of simvastatin during the resolution phase of experimentally formed venous thrombi. J Invest Med. 2017;65(6):999–1007. https://doiorg.publicaciones.saludcastillayleon.es/10.1136/jim-2017-000442.

    Article  Google Scholar 

  200. Venardos N, Deng XS, Yao Q, Weyant MJ, Reece TB, Meng X, et al. Simvastatin reduces the TLR4-induced inflammatory response in human aortic valve interstitial cells. J Surg Res. 2018;230:101–9. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.jss.2018.04.054.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  201. Dimitrow PP, Jawieñ M. Anti-inflammatory effect of atorvastatin in patients with aortic sclerosis or mild aortic stenosis independent of hypercholesterolemia. Pharmacol Rep. 2010;62(6):1250–4. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/S1734-1140(10)70390-X.

    Article  CAS  PubMed  Google Scholar 

  202. Katsuki S, Koga J-i, Matoba T, Umezu R, Nakashiro S, Nakano K, et al. Nanoparticle-mediated delivery of Pitavastatin to Monocytes/Macrophages inhibits Angiotensin II-Induced Abdominal aortic aneurysm formation in ApoE–/– mice. J Atheroscler Thromb. 2022;29(1):111–25.

    Article  CAS  PubMed  Google Scholar 

  203. Wang JA, Chen WA, Wang Y, Zhang S, Bi H, Hong B, et al. Statins exert differential effects on angiotensin II-induced atherosclerosis, but no benefit for abdominal aortic aneurysms. Atherosclerosis. 2011;217(1):90–6. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.atherosclerosis.2011.03.005.

    Article  CAS  PubMed  Google Scholar 

  204. Yoshimura K, Nagasawa A, Kudo J, Onoda M, Morikage N, Furutani A, et al. Inhibitory effect of statins on inflammation-related pathways in human abdominal aortic aneurysm tissue. Int J Mol Sci. 2015;16(5):11213–28. https://doiorg.publicaciones.saludcastillayleon.es/10.3390/ijms160511213.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  205. van der Meij E, Koning GG, Vriens PW, Peeters MF, Meijer CA, Kortekaas KE, et al. A clinical evaluation of Statin Pleiotropy: Statins selectively and dose-dependently reduce vascular inflammation. PLoS ONE. 2013;8(1). https://doiorg.publicaciones.saludcastillayleon.es/10.1371/journal.pone.0053882.

  206. Zhao C, Zuckerman ST, Cai C, Kilari S, Singh A, Simeon M, et al. Periadventitial delivery of simvastatin-loaded microparticles attenuate venous neointimal hyperplasia associated with arteriovenous fistula. J Am Heart Assoc. 2020;9(24). https://doiorg.publicaciones.saludcastillayleon.es/10.1161/JAHA.120.018418.

  207. Zhang L, Jin H, Huang J, Lu H, Guan Y, Chen X, et al. Local delivery of Pravastatin inhibits intimal formation in a mouse vein Graft Model. Can J Cardiol. 2012;28(6):750–7. https://doiorg.publicaciones.saludcastillayleon.es/10.1016/j.cjca.2012.01.018.

    Article  PubMed  Google Scholar 

  208. Eschrich J, Meyer R, Kuk H, Wagner AH, Noppeney T, Debus S, et al. Varicose remodeling of veins is suppressed by 3-Hydroxy-3-Methylglutaryl Coenzyme A reductase inhibitors. J Am Heart Assoc. 2016;5(2). https://doiorg.publicaciones.saludcastillayleon.es/10.1161/JAHA.115.002405.

  209. Chowdhury A, Tamanna S, Kar K. Role of macrophages in atherosclerosis. Asian J Med Biol Res. 2020;6:366–74. https://doiorg.publicaciones.saludcastillayleon.es/10.3329/ajmbr.v6i3.49784.

    Article  CAS  Google Scholar 

Download references

Funding

No funding was received for this study.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: AS. Writing-original draft: HG. Writing-review and editing: BE, SK, TJ, AS. Approval of the final version: All authors.

Corresponding authors

Correspondence to Tannaz Jamialahmadi or Amirhossein Sahebkar.

Ethics declarations

Ethical approval

Not applicable.

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Open Access This article is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License, which permits any non-commercial use, sharing, distribution and reproduction in any medium or format, as long as you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons licence, and indicate if you modified the licensed material. You do not have permission under this licence to share adapted material derived from this article or parts of it. The images or other third party material in this article are included in the article’s Creative Commons licence, unless indicated otherwise in a credit line to the material. If material is not included in the article’s Creative Commons licence and your intended use is not permitted by statutory regulation or exceeds the permitted use, you will need to obtain permission directly from the copyright holder. To view a copy of this licence, visit http://creativecommons.org/licenses/by-nc-nd/4.0/.

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gholamalizadeh, H., Ensan, B., Karav, S. et al. Regulatory effects of statins on CCL2/CCR2 axis in cardiovascular diseases: new insight into pleiotropic effects of statins. J Inflamm 21, 51 (2024). https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12950-024-00420-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doiorg.publicaciones.saludcastillayleon.es/10.1186/s12950-024-00420-y

Keywords