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Abstract
Allergic diseases significantly impact the quality of life of people around the world. Cytokines play a crucial role in 
regulating the immune system. Due to their importance in pro-inflammatory mechanisms, cytokines are used to 
understand pathogenesis and serve as biomarkers in many diseases. One such cytokine is interleukin-33, a member 
of the IL-1 family, including IL- 1α, IL-1β, and IL-18. The IL-33 receptor is a heterodimer of IL-1 receptor-like 1 and 
IL-1 receptor accessory protein. IL-33 plays a critical role in regulating innate and adaptive immune responses. The 
primary targets of IL-33 in vivo are tissue-resident immune cells, including mast cells, group 2 innate lymphoid cells, 
regulatory T cells, T helper 2 cells, eosinophils, basophils, dendritic cells, Th1 cells, CD8 + T cells, NK cells, iNKT cells, 
B cells, neutrophils, and macrophages. However, IL-33 appears to act as an alarm signal that is promptly released 
by producing cells under cellular damage or stress conditions. IL-33 regulates signaling and various biological 
functions, including induction of pro-inflammatory cytokines, regulation of cell proliferation, and involvement 
in tissue remodeling. IL-33 is fundamental in immune-related diseases and plays a critical role in the control of 
inflammation. Recently, IL-33 has been shown to significantly impact allergic diseases, primarily by inducing Th2 
immune responses. IL-33 is a key regulator of mast cell function and a promising therapeutic target for treating 
allergic diseases. This review provides an overview of the current understanding of the role of IL-33 in allergy 
pathogenesis and potential clinical approaches.
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Introduction
Allergic disorders are widespread in developed countries 
and have an essential socio-economic impact [1]. Aller-
gic rhinitis (AR), asthma, and atopic dermatitis (AD) 
are examples of chronic allergic diseases that persist 
throughout life [2, 3]. Recent clinical and experimental 
studies have helped to understand the underlying mech-
anisms and to develop targeted therapies. Ultimately, 
allergen exposure triggers mast cell stimulation and 
degranulation, eosinophil employment and penetration, 
T helper (Th2) cell activation and differentiation, and 
antigen-specific immunoglobulin E (IgE) creation. There 
is now a bias towards a type 2 cytokine response, catego-
rized by excessive manufacture of IL-4, IL-5, and IL-13 
cytokines in the upper and lower airways [4, 5]. IL-4 ini-
tiates and encourages Th2 replies and also triggers these 
effector cells, whereas IL-13 donates to the advance-
ment of allergic answers by stimulating mucus creation 
and eosinophilic penetration by making eotaxin [6, 7]. 
Upon FcεRI binding, basophils and mast cells manufac-
ture numerous chemical intermediaries, including his-
tamine and lipid metabolites [8]. The airway epithelium 
is the primary protection contour, defending the airway 
from pathogens and potential threats [9, 10]. Nucleotide-
binding oligomerization domain (NOD)-like receptors 
(NLRs) and Toll-like receptors (TLRs) are taking place 
in the outside of epithelial cells and enable them to iden-
tify structurally preserved pathogen-associated molecu-
lar patterns (PAMPs). Upon encountering these external 
danger signs, epithelial cells initiate immunity replies 
[11, 12]. The primary epithelial response to PAMP-TLR/
NLR communication is the creation of numerous cyto-
kines that can stimulate specific immune responses, bias 
the type 2 immune response, and reduce inflammation 
[12, 13]. Cytokines perform a vital role in the instruc-
tion of adaptive and innate systems and have been used 
to comprehend pathogenesis and as biomarkers in differ-
ent illnesses, including allergic disorders, autoimmune 
disorders, and cancer [14, 15]. Recent studies suggest 
that IL-33 plays a significant role in allergic disorders 
[16, 17]. This review focuses on the structure, biology, 
and currently reported role of the IL-33 cytokine and its 
potential clinical implications in allergic inflammatory 
disorders.

IL-33: sources, structure, functions
IL-33 (IL-1F11) was first recognized as high endothelial 
venule nuclear protein (NF-HEV) in endothelial cells 
of human lymphoid tissues [18, 19]. In 2005, IL-33 was 
reclassified as a participant in the IL-1 superfamily [19]. 
IL-33 has a double job as an extracellular cytokine of 
the IL-1 superfamily (pro-inflammatory) and intracellu-
larly as a nuclear factor regulating gene appearance [19, 
20]. Intracellularly, IL-33 has transcriptional repressive 

properties, while nuclear IL-33 attenuates pro-inflamma-
tory signaling via appropriating nuclear NF-kB, reducing 
NF-kB-driven gene expression [21]. Conversely, IL-33 
encourages inflammation in endothelial cells by upreg-
ulating the p65 subunit of the NF-kB compound in the 
nucleus. In the excite of cells, IL-33 functions as a pro-
inflammatory cytokine, and its biological properties are 
initiated by connecting to their receptor [22]. The IL-33 
gene is situated on chromosome 9 at 9p24.1 [23]. The 
human IL-33 gene contains eight exons and produces a 
270 amino acid protein (30 kDa) with two evolutionarily 
conserved domains [24, 25]. The cytokine area is struc-
tured like IL-1 and has folding possessions analogous to 
IL-1α, IL-1β, and IL-18 [26, 27]. Under normal condi-
tions, complete IL-33 is continuously present in numer-
ous cell kinds throughout human tissues and is situated 
in their nuclei [19, 23].

The main foundations of activity in humans include 
human endothelial cells, epithelial cells in barrier tissues, 
and reticular fibroblast cells in lymphoid tissues. The 
nervous system comprises glial cells, neurons and astro-
cytes, smooth muscle cells, osteoblasts, adipocytes, and 
various immune cells such as macrophages, mast cells, 
monocytes, and dendritic cells (DCs). This suggests a sig-
nificant character in defending the body against damage 
and contamination in standard and recurrently irritated 
tissues and tumor tissue [23, 28]. In the inactive situation, 
IL-33 is located in the nucleus and bound to chromatin 
via a chromatin-connecting domain, a critical compo-
nent of cellular homeostasis that acts as a transcriptional 
repressor [29, 30]. IL-33 shares similarities with alarm-
ins or damage-associated molecular patterns (DAMPs), 
pro-inflammatory factors released through injured cells 
[31, 32]. Alarmins perform as intercellular indications via 
binding to chemotactic and pattern recognition recep-
tors (PRRs) to enhance immunity cell responses in host 
protection [18]. IL-33 has multiple effects on the immune 
response. It is a component of the host’s immunity to 
pathogens or immune-related inflammatory disorders. 
The innate immune system can produce IL-33 to respond 
to infectious agents and irritants [33, 34]. PAMP-gener-
ated IL-33 is vital in encouraging local airway inflamma-
tion related to Th2-dependent antigens and augmenting 
innate immunity [35, 36]. It can straightly cause airway 
inflammation and is frequently not required to initiate 
and distinguish antigen-specific Th2 cells [37, 38]. The 
IL-33 receptor (IL-33R) is a heterodimer containing a 
flexible ST2 (T1, IL-1RL1, IL-1R4) and a familiar, gener-
ally stated coreceptor known as IL-1 receptor accessory 
protein (IL-1RAcP) (IL-1R3) [39, 40]. ST2, a toll-like 
receptor/interleukin-1 receptor (TIR) superfamily par-
ticipant, constitutes the IL-33 receptor [41, 42].

ST2 is the sole receptor for IL-33, although it has four 
splice isoforms from a single transcript according to 
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promoter complicated [33, 43]. The two main products 
of ST2 genes, which result from substitute splicing, are 
transmembrane shape ST2 (ST2 or ST2L) and soluble 
shape ST2 (sST2) [44, 45]. ST2L is a functional element 
of IL-33R that is selectively and persistently stated on a 
diversity of immune cells such as eosinophils, mast cells, 
ILC2, basophils, DCs, NKs, Th2 cells, macrophages, 
Tregs, B cells, airway smooth muscle cells, also on endo-
thelial cells, epithelial cells and fibroblasts [23, 46, 47]. 
Conversely, sST2 is considered to be an IL-33 decoy 
receptor [20, 48]. The heterodimer formed by the bind-
ing of IL-33, ST2, and IL-1RAP results in dimerization of 
the TIR domain, which stimulates downstream signaling 
through the heterodimeric complex. IARK-1, IARK-4, 
and mitogen-activated protein kinase (MAPK) kinases 
activate the TNF receptor-associated factor 6 (TRAF6) 
signaling pathway, which in turn activates activator pro-
tein 1 (AP-1) through c-Jun N-terminal kinases (JNKs). 
TRAF6 also activates the inhibitor of nuclear factor-κB 
(NF-κB) kinase (IKK) complex, releasing active NF-κB 
from the complex and activating nuclear transcription 
signals necessary for creating other inflammatory cyto-
kines. Upon receptor stimulation, Jun kinase (JNK) and 
extracellular signal-regulated kinase (ERK) 1/2 promote 
IRF1 activation, resulting in the inhibition of Foxp3 and 
GATA3 expression [49], thereby inducing inflammatory 
cytokine production [50, 51](Fig. 1).

Altering the subcellular localization of IL-33 may sig-
nificantly impact immune homeostasis, suggesting that 

nuclear sequestration of IL-33 may limit its pro-inflam-
matory potential [52]. IL-33 may also perform as a link 
among non-specific and specific immune cells, promot-
ing Th2-mediated inflammation [53, 54]. In reply to 
IL-33, ILC2 can multiply and secrete IL-5 and IL-13 in 
mouse models [55, 56]. Also, IL-33 can activate further 
non-specific immune cells such as basophils, macro-
phages, mast cells, and eosinophils, leading to a more sig-
nificant contribution to airway inflammation [55, 56]. In 
addition, IL-33 can affect specific immunity by stimulat-
ing ILC2 and DCs and adaptive immune cells that express 
the ST2 receptor. Therefore, IL-33 induces DC to make a 
variety of cytokines and chemokines [57, 58].

Exposure to IL-33 can induce DCs to support the 
extension and specialization of CD4 + T cells by promot-
ing the manufacture of IL-5 and IL-13 [59, 60]. IL-33 
plays a critical character in the immune response asso-
ciated with Th2 [63, 64], with ST2-expressing Th2 cell’s 
ability to generate IL-5 and IL-13 in response to IL-33 
[61]. When combined with an antigen, IL-33 can polar-
ize human naive CD4 + T cells towards IL-5 manufacture. 
In addition, differentiation of IL-5 + T cells was induced 
by the classical IL-33 ways, including MyD88, MAPKs, 
and NF-κB only in the attendance of the IL-1R addi-
tion protein [62, 63]. IL-33 has been rolled into numer-
ous non-allergic disorders such as infectious diseases, 
musculoskeletal diseases, inflammatory bowel disease, 
cancer, obesity, and diabetes [33, 51]. IL-33 strongly 
stimulates the manufacture of Th2 cytokines and thus 

Fig. 1 IL-33 impact in different cells. IL-33 is primarily expressed by different types of structural cells. IL-33 through linking to ST2 + immune cells cause dif-
ferent effect on cells, such as Induce production of various cytokines and chemokines by mast cells or Induces eosinophilia. transmembrane shape (ST2)
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exacerbates the progression of Th2-associated diseases 
such as asthma and allergic rhinitis [64]. In addition, 
IL-33 has been revealed to play an essential character in 
immune regulatory responses [65, 66]. The genes pro-
gramming IL-33 and ST2/IL1RL1 have been recognized 
as significant vulnerability loci for human asthma in 
numerous genome-wide association educations [67, 68]. 
Manufacture of pro-inflammatory cytokines and activa-
tion of Th2-type immune cells can exacerbate allergic 
diseases [39, 69]. Several studies have shown that IL-33 
is a potent activator of mast cells and basophils, inducing 
cell migration, maturation, adhesion, and survival while 
producing several pro-inflammatory cytokines [70, 71]. 
Examination of patient samples and mouse models sup-
ports the critical character of the IL-33/ILC2 axis in aller-
gic inflammation in numerous tissues and disorders [69, 
72]. The essential function of endogenous IL-33 in aller-
gic inflammation was primarily established in IL-33-defi-
cient mice [73]. In addition, IL-33 expression is increased 
in bronchial epithelial cells of samples with asthma and 
epidermal keratinocytes of patients with atopic derma-
titis [74, 75]. Increased expression of IL-33 and ST2 has 
been reported in lung tissue from both asthmatic and 
allergic airways, with ST2 playing a critical character in 
antigen-induced airway inflammation [76].

IL-33 in different allergic diseases
Asthma
The incidence of allergic asthma has amplified signifi-
cantly in industrialized countries over the last century 
(ranging from 5.2 to 16.8%) [77]. Asthma is highly het-
erogeneous, and all endotypes are typically characterized 
via airway hyperresponsiveness (AHR), tissue renova-
tion, and extreme Th2 inflammation [78, 79]. Asthma is 
now understood to be a multifaceted disease with dif-
ferent entities and some variation in pathogenesis [45, 
79]. Previous research has revealed that a principal Th2 
lymphocyte answer may contribute to the development 
of asthma symptoms, primarily through the secretion of 
cytokines such as IL-4, IL-5, and IL-13 [45, 68].

In calculation, nonspecific immune cells such as mast 
cells, basophils, neutrophils, EOSs, DC, and ILC2s have 
been occupied in the beginning or development of the 
disorders [80, 81]. Recent studies have shown that the 
motivation of cells of the nonspecific immune system 
triggers the stimulation of NF-kB, which results in the 
creation of pro-Th2 cytokines such as IL-33 [59, 82]. Air-
way epithelial cells and APCs enhance allergic airway 
inflammation and thus the pathophysiological symbols 
of asthma through discharging cytokines such as IL-1β 
and IL-6. IL-33 derived from Epithelium encourages Th2 
and ILC2 distinction, which straight allergic immune 
responses via the release of IL-4, IL-5, and IL-13 [6, 63, 
82].

IL-33, an important allergy cytokine, participates in 
nonspecific and specific immunity in asthmatic immune 
stimulation [79, 83]. This cytokine directly stimulates 
macrophages, osteoclasts, Th2 cells, mast cells, DCs, and 
other subsets that express T1/ST2, the IL-33 receptor 
[84]. Downstream IL-33 provokes high levels of IL-5 and 
IL-13 manufactured by IL-33-irritated ILC2s, resulting in 
a strong pro-allergic response [85]. A genetic polymor-
phism in IL-33 or ST2 has been recognized in patients 
with asthma [86]. Two single nucleotide polymorphisms 
(SNPs) in ST2 - rs1420101 and rs11685480 - have been 
suggested to control plasma sST2 levels in airway epi-
thelial cells and the distal lung parenchyma, correspond-
ingly, subsequent in an amplified risk of classical airway 
inflammation in asthmatics [87]. Significant correlations 
were found between the plasma parts of the IL-33/ST2 
axis in patients with allergic rhinitis and those with asso-
ciated allergic asthma [88]. Remarkably, IL-33 appear-
ance is upregulated in the bronchial mucosa of asthmatic 
patients. This is associated with disease harshness [89]. 
In a mouse model, airway inflammation and AHR were 
decreased by knocking out ILC2s or blocking IL-33-ST2 
signaling [90]. in asthma, When basophils stimulated by 
IL-33, basophils express ST2 and create Th2 cytokines 
[91]. Another study showed that in vitro motivation with 
IL-33 amplified ST2L mRNA expression in eosinophils, 
leading to improved eosinophil adhesiveness and CD11b 
expression, also feasibility, which was reduced by a deac-
tivating antibody to ST2 [44](Fig. 2).

Given the significance of IL-33 signaling in allergic 
asthma, numerous biologics have been advanced and 
tried as potential treatments. Inhibition of the AHR 
reduced IL-5 levels in BALF, and reduced eosinophil 
numbers were observed in an OVA challenge mouse 
model preserved with anti-IL-33 or sST2 [92]. Mono-
clonal antibodies such as RG6149 [93], and CNTO7160 
[94], either against ST2 or IL-33, such as ANB020 [93], 
REGN3500 [93], and MEDI3506, have undergone or 
completed clinical trials. A high-affinity monoclonal 
antibody against dokimab (LY3375880) is in preclinical 
development to inhibit IL-33-dependent inflammatory 
signaling [95].

Allergic rhinitis
Allergic rhinitis (AR) is a public allergic inflammatory 
disease in 10–40% of the population [96, 97]. AR is an 
IgE-mediated type 1 allergic disorder of the nasal mucosa 
triggered via exposure to nasal allergens. Nasal responses 
in AR consist of IgE-related early-stage responses and 
Th2 cytokine-related late-stage responses [98]. Due to 
early-stage responses, medical signs, including sneez-
ing and rhinorrhea, happen within 5–30 min. Late-stage 
responses occur 6–24  h after allergen exposure, and 
Eosinophilic accumulation in the nasal mucosa is the 
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primary pathological change associated with the late-
stage response [98, 99]. A previous study established an 
essential rise in serum IL-33 levels in Japanese patients 
suffering from seasonal AR and also found a significant 
correlation between vulnerability to AR and polymor-
phisms in the IL-33 gene [100]. Notably, the amount of 
IL-33-responsive ILCs was also found to be amplified 
in nasal polyps from patients with rhinosinusitis [101]. 
After exposure to ragweed, mice show exacerbated 
symptoms of AR, activation of nasal Th2, increased 
serum levels of ragweed-specific IgE, and penetration of 
the nasal mucosa by eosinophils and basophils, which 
are not detected in IL-33- and ST2-deficient mice [102]. 
IL-33 protein is consistently stated in the nucleus of 
nasal epithelial cells and is rapidly released into the nasal 
fluid in response to ragweed pollen exposure [103]. Col-
lected with the involvement of IL-33 in activating eosino-
phils, basophils, and mast cells to manufacture allergic 

inflammatory mediators, this mechanism may result in 
the persistent attacks and permanent mucosal hypertro-
phy seen in AR [104, 105]. However, during the pollen 
season, IL-33 mRNA appearance is significantly upreg-
ulated in nasal epithelial cells of AR patients, and this 
increased extracellular statement is related to decreased 
IL-33 protein appearance in inflamed nasal epithelial 
cells [103]. Furthermore, the IL-33 receptor ST2 is sig-
nificantly stated in the nasal mucosa of AR patients, 
proposing that IL-33/ST2 may be critical in developing 
allergic nasal disease [52, 106]. In addition, the IL-33-ST2 
encouraged the Th2 response to cooperate with the 
Th17 immune response, demonstrating numerous T cell 
responses in developing allergic nasal disease [103, 107]. 
Targeting IL-33 and its receptor represents a new thera-
peutic method for handling allergic rhinitis [108]. Anti-
IL-33 treatment decreases nasal scratching, improves 
skin stripping, and decreases eosinophilic infiltration and 

Fig. 2 IL-33 in allergic diseases pathology. IL-33 produce by different cell such as epithelial cells and bind to its receptor, then activates various ST2 + im-
mune cell types implicated in the allergic responses for example, Th2, ILC, Mast cell. These cells produce cytokine such as IL-4, IL-5 and IL-13, that impact 
on EOS for mediator releases. Innate lymphoid cells (ILC2s); Eosinophil (EOS)
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serum total and OVA-specific IgE levels [109, 110] (Table 
1).

Food allergy (FA)
A food allergy is an abnormal immune response to an 
antigen ingested through food [111]. The medical fea-
tures of FA are varied and random, influenced by many 
factors—symptoms of FA vary from oral allergy syn-
drome to life-threatening anaphylaxis [111, 112]. The 
prevalence of food allergy is growing worldwide, affect-
ing both industrialized and developing countries, with 
about 8% of children and 11% of adults in the United 
States affected [113]. Symptoms of food allergy can dif-
fer from somebody to somebody, with some experienc-
ing mild abdominal discomfort and others experiencing 
severe, dangerous anaphylaxis [114, 115]. Consequently, 
food allergy has public health and economic implica-
tions [116]. In the sensitivity stages, food allergens first 
come into contact with protective surfaces on the skin, 
gastrointestinal tract, or respiratory tract. Skin barrier 
surfaces with defects and a decrease in their honesty 
increase the permeability of allergens, producing pro-
inflammatory cytokines derived from epithelial tissue, 
particularly IL-33 and IL-25 [46, 117]. Together, these 
cytokines begin an allergic inflammatory process that 
leads to allergic responses in individuals with food aller-
gies [8, 115]. Cytokines activate ILC2s, induce distinction 
of naive CD4 + T cells into Th2 cells, create proinflamma-
tory cytokines such as IL-4, IL-5, IL-9, and IL-13, induce 
isotype switching from IgG to IgE in B cells, trigger link-
ing of IgE to FcεRI receptors on mast cells or basophils 
followed by degranulation, and result in the liberate of 
histamine and other proinflammatory allergic mediators 
[8, 81, 111, 115]. Animal surveys found that epithelial 
cell-derived IL-33 is vital in advancing food allergy [118]. 
Also, another study showed that skin exposure to pea-
nut induced cytokine appearance in T cells and dendritic 
cells that was reliant on IL-33-ST2 signaling, signifying 
that IL-33 may perform a role in mediating food allergy 
through skin exposure early in life [118, 119]. At the 
sensitization stage, IL-33 induced intestinal anaphylaxis 
through cross-linking of IgE and degranulation of mast 
cells [118, 120]. In calculation to mast cells, IL-33 can 
stimulate ILCs and overwhelm the Treg role, which pro-
motes FA immunity [121]. The study proposes that IL-33 
plays a significant role in the association between barrier 
defects and FA [120, 121]. Recently, a study reported that 
injection of an mAb against the IL-33 receptor effectively 
prevents the advancement of FA [122]. Thus, IL-33 and 
its receptor ST2 may serve as potential therapeutic goals 
to attenuate the mast cell-associated pathogenesis of FA 
[119]. Some suggest that IL-33 inhibitors may be of heal-
ing worth in FA patients (Table 2) [123].

Atopic dermatitis
Atopic dermatitis (AD) is a primary inflammatory skin 
condition branded by long-lasting or recurrent pruri-
tus and may be associated with other atopic situations 
such as asthma and food allergy [124]. AD has a higher 
occurrence in children but can also disturb adults [125]. 
It is more likely to occur in people with allergies [126, 
127]. AD is associated with over-reactivity of the skin, 
disruption of the epidermal barrier role, dry skin, and 
increased vulnerability to skin contaminations. The cause 
of inflammation has been ascribed to the stimulation of 
various immune cells. Mast cells are critical in initiating 
the disease, while Tregs performance is essential in con-
trolling the inflammatory response [128]. AD is charac-
terized by Th2 cytokines in the acute phase and raised 
levels of Th1 cytokines in the lasting phase [126, 128]. 
A dysfunction in the nonspecific and specific immune 
response could initiate skin injury, provoking an elevated 
Th2 response that exacerbates and progresses AD [129]. 
However, CD4 + T lymphocytes respond to IL-33 and 
stimulate interferon-gamma production. This promotes 
chronic skin inflammation [130]. In addition, IL-33, as 
tissue-derived cytokines, has recently been implicated in 
atopic dermatitis [131, 132]. Based on current explana-
tions, IL-33 is identified as a prominent threat signal and 
pathogenic driving force in atopic dermatitis [131].

Imai et al. established that a transgenic mouse express-
ing IL-33 impulsively advances AD by stimulating ILC2s 
and basophils [132]. Additionally, IL-33 was found to 
be a significant regulator of eosinophil role [132]. Shi-
mizu et al. investigated the correlation between AD and 
a polymorphism of the ST2 gene and proposed that the 
IL-33-ST2 axis plays a crucial character in AD [133]. 
Other studies showed the upregulation of IL-33 in the 
epidermis and the penetration of ST2-positive cells in the 
dermis of skin lesions in AD patients [75, 134]. An SNP 
located in the distal promoter of the ST2 gene on chro-
mosome 2q12 shows a significant association with AD, 
and there is a robust association between tall soluble ST2 
and total IgE stages in the sera of AD patients [135].

Still, mRNA levels of IL-33 and ST2 were significantly 
higher in AD patients’ affected skin than in non-affected 
skin and healthy people [75]. Various treatments have 
been advanced to heal AD, including topical steroids, 
calcineurin inhibitors, and immunosuppressive agents 
[133]. Blocking IL-33/ST2 signaling may be a potential 
healing goal for alleviating the pruritus and skin inflam-
mation of dermatitis related to IL-33/ST2 signaling [75, 
136].

Allergic conjunctivitis
Th2 responses on the ocular surface are responsible for 
causing inflammation to various allergens, which can lead 
to tissue damage and infection, ultimately resulting in the 
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advancement and aggravation of atopic keratoconjuncti-
vitis [137]. IL-33 protein has been reported to be highly 
stated in human vascular endothelial cells and conjuncti-
val epithelium in giant papillae gained from patients with 
atopic keratoconjunctivitis [138]. After administration of 
ragweed pollen, IL-33 is released, leading to penetration 
of eosinophils and CD4 + T cells with stimulated ST2 on 
the surface of the conjunctival stroma [139]. These acti-
vations are significantly reduced in IL-33 knockout mice 
[140].

Chronic spontaneous urticaria (CSU) and anaphylaxis
CSU is a common skin condition considered by the pres-
ence of itchy wheals that last less than 24  h and per-
sist for at least six weeks and often for several decades 
[141]. CSU is an autoimmune disorder with hive forma-
tion instruments reliant on IgG and IgE [142]. Despite a 
favorable prognosis, CSU is a debilitating disease as its 
primary symptom, pruritus, can cause sleep trouble and 
harmfully affect quality of life and work performance 
[143]. There are signs of a role for IL-33 in the pathogen-
esis of CSU [144]. In particular, studies of skin biopsies 
from patients with CSU have shown significantly elevated 
levels of IL-33 in contrast to healthy controls, proposing 
that the appearance of Th2-promoting cytokines may 
play an essential role in healing [145]. Another study pro-
poses that IL-33 signaling may be a critical orientation of 
histaminergic itch in mast cell-associated pruritic situa-
tions such as CSU [146]. This suggests that IL-33 plays a 
character in causing and expressing CSU.

IL-33 levels in the serum of atopic patients increase 
significantly during anaphylaxis [147, 148], suggesting 
that IL-33 may play a character in advancing anaphylaxis. 
Similarly, IL-33 can induce mast cell degranulation via 
ST2, leading to systemic and passive cutaneous anaphy-
laxis in IgE-sensitized mice, even in the nonappearance 
of a specific IgE antigen [147, 149]. This suggests that the 
IL-33-ST2 pathway plays a vital role in inflammation dur-
ing the later stages of passive cutaneous anaphylaxis in 
mice.

Concluding remark
IL-33 is a tissue-derived nuclear cytokine from the IL-1 
family, expressed in endothelial cells, epithelial cells, and 
fibroblast-like cells under both homeostasis and inflam-
mation. It has been identified as an alarmin cytokine 
from the IL-1 family; IL-33 has appeared as a central 
modulator of tissue Tregs and ILC2s, with significant 
characteristics in type-2, type-1, and regulatory immune 
responses. Current studies suggest that IL-33 promotes 
the manufacture of substantial quantities of IL-5 and 
IL-13 by ILC2s, potentially contributing to the initiation 
of allergic inflammation. The intense activity of IL-33 
on ILC2s, and the pivotal role of these cells in the early M
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stages of allergic airway inflammation, may help explain 
the involvement of the IL-33/ST2 pathway in the genetic 
susceptibility to human allergic diseases. Beyond its 
pathological role in allergic diseases, IL-33 also contrib-
utes to various immune regulatory processes. However, 
further studies are needed to clarify the precise therapeu-
tic potential of targeting the IL-33/ST2 axis in different 
disease contexts and its physiological roles, as current 
evidence is still evolving.
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