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Abstract 

Several studies have demonstrated that the pulmonary immune response is primarily facilitated by antigen-present-
ing cells (APCs), and that both professional and non-professional APCs contribute to overall pulmonary immunity. 
APCs play unique roles and mechanisms in pathogen elimination and immunomodulation. Mucosal immunity 
exhibits potential advantages over traditional parenteral immunity in that it stimulates immune defenses in mucosal 
and systemic tissues, which is important for reducing the burden of lung disease. However, obtaining a compre-
hensive understanding of the crosstalk between mucosal immunity and APC in the context of various lung diseases 
remains challenging. This mini-review aimed to elucidate the mechanisms of novel mucosal immunity, targeting APC 
action during lung infections, allergies, and malignant tumorigenesis. This minreview provides important insights 
into more effective therapeutic approaches for various lung diseases.
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Introduction
Specialized APCs are known for their ability to present 
exogenous antigens to T cells such as dendritic cells 
(DCs), macrophages (Møs), and B cells. When dendritic 
cells (DCs) detect and capture proteins that are either 
immunogenic or linked to activating molecules, they 
experience a change in their phenotype and move toward 
the lymph nodes. In these nodes, they display peptides 
derived from proteins using MHC-I and MHC-II mol-
ecules to antigen-specific CD8 + and CD4 + T cells [1]. 
After an infection occurs, conventional dendritic cells 
type 1 (cDC1s) relocate from their intraepithelial origins 
to the draining mediastinal lymph nodes and are typically 
recognized as the main subset responsible for cross-pre-
senting antigens to CD8 + T cells. Conversely, conven-
tional dendritic cells type 2 (cDC2s) assist in priming 
CD4 + T cells, while plasmacytoid dendritic cells (pDCs) 

are primarily noted for their synthesis of type I interfer-
ons [2]. The process of polarization in lung macrophages 
is dynamic and influenced by a range of environmental 
factors. In cases of bacterial infections or inflamma-
tory states, macrophages generally polarize towards the 
M1 phenotype, leading to the considerable secretion of 
pro-inflammatory cytokines. In contrast, during chronic 
infections or heightened inflammatory reactions, these 
cells might transition to the M2 phenotype, which aids 
in tissue healing and reduces inflammation by promoting 
immune tolerance [3, 4]. Alveolar macrophages carry out 
immunoregulatory tasks by generating soluble mediators 
that suppress the activity of dendritic cells. Nevertheless, 
if the macrophage-surfactant-epithelial barrier is com-
promised, antigens may penetrate to reach deeper senti-
nel dendritic cells. This can result in modifications to the 
local cytokine milieu and promote dendritic cell activa-
tion, initiating adaptive immune responses. Furthermore, 
interstitial macrophages have the capability to process 
antigens into smaller peptides and then present them on 
the surfaces of adjacent dendritic cells, thereby boost-
ing the immune activity of lung dendritic cells [5]. How-
ever, nonspecialized APCs are also capable of antigen 
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presentation including endothelial cells (ECs) and epithe-
lial cells, whose mechanisms have recently been investi-
gated [6–8].

Pharmaceuticals aimed at the nasal cavity primarily 
influence the respiratory mucosa along with the nasal-
associated lymphoid tissue (NALT) [9]. The immune 
mechanisms within the nasal mucosa are divided into 
inductive and effector locations. Inductive sites are 
mainly composed of mucosal lymphoid follicles situ-
ated in the respiratory zone, commonly known as 
NALT. Effector sites are responsible for the activation 
of B cell and T cell immune responses [10]. Surround-
ing the NALT are epithelial cells and a small quantity 
of microfold cells. The base of microfold cells is rich in 
B cells, T cells, macrophages, and dendritic cells (DC). 
These microfold cells act as multifunctional transport-
ers, facilitating the nonspecific and specific endocytosis 
of antigens that are displayed on their outer membrane, 
thereby aiding in the delivery of these antigens to anti-
gen-presenting cells [11]. Immune cells activated by 
antigens can traverse the bloodstream and participate in 
both mucosal immunity and systemic immune responses, 
which are marked by the production of immunoglobulin 
A (IgA) and immunoglobulin G (IgG), respectively [12]. 
Mucosal vaccines, including intranasal and intestinal vac-
cines, not only inhibit infection and prevent the progres-
sion of inflammatory diseases but also prevent infection 
from occurring while targeting tumor cells. Furthermore, 
mucosal vaccines are advanced by the discovery of safe 
and effective mucosal adjuvants combined with innova-
tive antigens and exploration of their mechanisms of 
action [13, 14]. Adjuvants are an integral component of 
most vaccine formulations, as suitable adjuvants facilitate 
the promotion of appropriate immune responses against 
target pathogens at both the innate and adaptive lev-
els [15]. Respiratory immunity offers unique advantages 
such as the induction of systemic and mucosal responses 
to prevent respiratory infections. However, the upper 
respiratory tract is susceptible to infections that endan-
ger the lower respiratory tract due to the invasion of 
various microorganisms and allergens through the nose 
and mouth. Therefore, upper respiratory tract-specific 
defense mechanisms are important [10, 16]. Nasal vac-
cines can activate immune cells located in the mucosal 
tissues of the upper and lower respiratory tracts to pro-
duce dual stimulation, and this, together with needle-
free administration, is conducive to the development of 
new nasal vaccines to produce long-lasting immunity 
and improve patient compliance [17]. This mini-review 
aimed to reveal novel mucosal immunotherapies target-
ing professional APC versus nonprofessional APC in pul-
monary lung diseases, and may contribute to a deeper 

understanding of the potential immunological role of 
APC in lung diseases and development of therapeutic 
directions.

Lung disease treatment: a novel mucosal vaccine 
that crosstalks APCs
Over time, extensive research has explored the unique 
role of APC in various diseases. In this study, we review 
mucosal immunotherapies targeting APC lungs from 
innocuous to deleterious pathogens and anti-tumors.

Allergic diseases
Asthma is a complex disease that usually occurs during 
childhood [18]. Epithelial cells serve as natural barriers, 
while corticosteroids, routinely used to treat asthma, 
improve epithelial function and enhance the integrity of 
epithelial tight junctions by inducing pro-calmodulin-1. 
This reinforces the first line of defense against harmless 
stimuli, such as allergens [19]. ECs, another type of non-
specialized APC, have many innate immune functions 
performed by Møs, including antigen presentation, and 
pro- and anti-inflammatory functions, and are important 
in regulating the differentiation of monocytes into Møs 
and DCs [20, 21]. Upon exposure to allergens, pulmo-
nary ECs initiate an immune response and coordinate 
with DCs to induce and enhance adaptive Th2 immunity 
and type 2 (T2) cytokine production. Steroids not only 
enhance epithelial integrity, but are also highly sensitive 
to T2 inflammation, making inhaled corticosteroids the 
cornerstone of allergic asthma treatment [22–24]. TSLP, 
a Th2-associated cytokine, is resistant to corticoster-
oid therapy [25]. The nasal prophylactic vaccine antigen 
P1 (a conserved region of the HIV-1 gp41 envelope gly-
coprotein) induces TSLP production when interacting 
with the nasal epithelium, thus further affecting humoral 
and cellular antigen-specific responses; caution must be 
used when utilizing it as an adjuvant to a mucosal vac-
cine against HIV or tuberculosis in patients with asthma. 
Caution should be exercised when used as an adjuvant 
for HIV or TB mucosal vaccines in patients with asthma 
[26]. For the treatment of corticosteroid-resistant non-
allergic asthma, ceramide nanoliposomes are used to 
treat corticosteroid-resistant non-allergic asthma by lim-
iting cell growth through inactivation of the AKT path-
way, which is controlled by a potent epithelial growth 
factor [27]. Nanoprobes containing an inhibitor of col-
ony-stimulating factor 1 receptor, which targets epithelial 
cell production, can also be used to eliminate the pro-
duction of allergen-reactive IgE, thereby preventing new 
asthma attacks and reversing already present allergic lung 
inflammation [28].Vaccines formulated with a hydro-
gel delivery system reduces eosinophilic inflammation 
and airway remodeling, including that of epithelial cells 
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[29]. The airway administration of OM-85 targets mul-
tiple innate and adaptive immune pathways to suppress 
allergic asthma, including the Streptococcus-dependent 
airway epithelial/IL-33/ILC2 axis in fungal infections, 
pulmonary allergeninduced T2 responses, and dendritic 
cells. It is administered at a lower dose than current oral 
treatments [30].

Pulmonary infection
A recent study used PVM, the murine equivalent of pneu-
mococcal respiratory syncytial virus (RSV), to develop 
a novel moues model of RSV coinfection. In this model, 
PVM infection increases the density of pneumococci in 
the nasopharyngeal space and accelerates the early stages 
of pneumococcal transmission. However, there was a 
reduction in PVM load in the upper respiratory tract of 
mice with pneumococcal infection [31]. In addition to 
the observation that flora interacts with each other, fully 
inactivated influenza, pneumococcal vaccines, and live 
influenza vaccines combined with recombinant peptides, 
derived from streptococcal surface factors, enhance 
pneumococcalspecific responses when co-administered 
using the nasal cavity. Crosstalk between the pathogen 
and vaccine influences the immune action of APCs and 
development of better vaccine strategies for these two 
pathogens [32, 33].

viral infection
RSV infections during infancy are highly associated with 
the risk of childhood asthma [34]. Although most acute 
respiratory viral infections, such as influenza, elicit a 
longlasting immune response, RSV infections result 
in relatively short-lived protective immunity and can 
repeatedly infect the host without antigenic alterations. 
[35] Conversely, DCs initiate the immune response by 
first crossing the EC barrier to reach the peripheral tis-
sues, where they uptake antigens through chemokines, 
and subsequently cross the lymphatic endothelium to 
enter the T-cell region of the draining lymph nodes [36]. 
Among them, cDC2s are attracted to and activated by 
alertin, which is secreted by PAMPstimulated airway 
epithelial cells and activates T helper cells mainly by pre-
senting viral antigens on MHC II [37]. The combination 
of DC-targeted therapy with vaccination may have addi-
tive or synergistic effects, ultimately treating RSV infec-
tions with minimal side effects [38]. The TLR5 ligand 
flagellin is most potent in activating neonatal lung APCs, 
inducing a significant elevation in the expression of 
maturation markers for the cDC1 and cDC2 subpopula-
tions. This unique efficiency suggests its potential use as 
a potent adjuvant for early mucosal vaccines in infancy 
for most infections, including those caused by respira-
tory syncytial and influenza viruses [39]. Interestingly, 

non-mucosal (intramuscular) inoculation with an IFN-
1-inducing adjuvant promotes the release of CXCL9, 
CXCL10, and CXCL11 from alveolar endothelial and 
epithelial cells. This leads to the recruitment of CXCR3-
expressing pDCs to the lungs and successfully enhances 
antigen-specific IgA production in intranasally sensitized 
vaccines [40].

Lung CD8 + memory T cells play a central role in influ-
enza, and in a study where mice were immunized sub-
cutaneously with ovalbumin antigen complexed with 
complete Fuchs’ adjuvant, then boosted by intranasal 
OVA administration, AM directed the rapid expansion 
of antigen-specific CD8 + T cells in the lungs whereas 
cDC1 deficiency had no significant effect [41]. In con-
trast, intranasal IFN- inhalation was observed in a mouse 
model of infection, directing the migration and function 
of cDC1 to develop an optimal anti-viral response con-
sisting of specific CD8 + T cells [42]. This may be due to 
differences in the pathways that stimulate CD8 + T cell 
expansion. The intranasal delivery of SIIN-Q11 nanofib-
ers triggers long-lived memory CD8 + T cells in  situ in 
the lungs via cDC1 and cDC2 crossover, precedes the 
drainage of mediastinal lymph nodes (mLNs) [43]. Intra-
nasal immunisation induces robust systemic and mucosal 
immune responses with secretory IgA and IgG prevent-
ing influenza infection at the site of viral entry. Secre-
tory IgA is produced by subepithelial plasma cells, and 
is translocated to the apical surface of airway epithe-
lial cells via polymeric immunoglobulin receptors that 
prevent the adhesion of airborne microorganisms [44]. 
The chitosan-functionalized iron oxide nano-enzymatic 
adjuvanted fully inactivated influenza virus, catalyzes 
DC maturation, and enhances antigen presentation lead-
ing to increased IgA mucosal adaptive immunity [45]. 
Riboflavin, a safe and inexpensive food additive, induces 
the phenotypic and functional maturation of DCs as an 
adjuvant for the fully inactivated influenza virus, enhanc-
ing the IgA and IgG levels [46]. Adjuvant influenza virus 
recombinant neuraminidase proteins are much safer 
as intranasal primary and booster immunization than 
an intranasal vaccination with live attenuated influenza 
vaccines [47]. As the primary antibody class in blood 
and extracellular fluids IgG monomers fuse to influenza 
virus hemagglutinin antigens in the trimerized structural 
domains and CpG adjuvants, for intranasal immuniza-
tion, bind to the receptor and mediate the transport of 
IgG antibodies across the epithelium, protecting against 
lethal influenza virus attack. Among them, CpG oligo-
nucleotides are widely used in the laboratory and are 
recognized as potent mucosal immunomodulators [48, 
49]. Graphene oxide nanoparticles have recently been 
demonstrated to be comparable to CpG, providing a new 
direction in adjuvant application. However, as secreted 
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IgA is more broadly reactive than IgG, it is an important 
component of the protective regimen of graphene oxide 
nanoparticles against various influenza virus infections 
[50]. Immunoglobulin G (IgG) shows promise for utiliza-
tion in influenza virus studies. Sialylated IgG promotes 
the expression of nuclear REST, dampens NF-κB signal-
ing, and triggers anti-inflammatory reactions, which aids 
in reducing lung inflammation and alleviating severe 
cases of influenza. This domain seems to present signifi-
cant prospects for additional investigation [51].

The alum adjuvant is cytotoxic to the alveoli, causing 
necrotic apoptosis of alveolar epithelial cells, resulting 
in the production of IL-33 to induce Th2 immunity and 
increased expression of MHC class II in antigen-pre-
senting cells in the lungs [52]. Thus, enhancing antigen-
specific IgA antibody production. It was observed that 
alum itself causes lung injury, and that the absence of 
antibodydependent potentiation effects, which ensures 
safety, creates new challenges for the use of conven-
tional alum adjuvants. In recent studies, pertussis colo-
nization factor A with alum as an adjuvant for a vaccine 
against severe acute respiratory syndrome coronavirus 
2 (SARS-CoV-2) surfacespiking protein, triggers sys-
temic and mucosal Th1/17-polarized immune responses. 
The interaction between the two reduced respiratory 
tract injuries. [53] whereas a shift from the conven-
tional microscale alum adjuvant to a nanoscale reduced 
the risk of antibody-dependent potentiation, prevent-
ing SARS-CoV-2 infection in a highly effective manner 
[54]. The mechanism of antigen delivery by respirable 
coronavirus mimetic particles encoded by spiny pro-
teins involves rapid binding to and internalization by 
alveolar macrophages as immunization in vivo increases 
mucosal IgA levels [55]. Additionally, mucosal vaccines 
with C5aR ligand Co1 peptide adjuvanted spicatin act-
ing as antigen target monocyte-derived lysogenic DCs 
improves vaccination efficiency [56]. The main target for 
the development of a SARS-CoV-2 vaccine is not only 
spicatin but also the receptorbinding domain of spicatin 
that induces potent neutralizing antibodies and con-
tains a major T-cell epitope that is important for viral 
entry into the target cell [57]. The modified porous silica 
particulate adjuvant and receptor-binding domain vac-
cine enhanced the uptake of SARS-CoV-2 antigen by 
nasal and airway epithelial cells, ultimately triggering a 
stronger immune response [58]. Furthermore, targeting 
DCs with a Clec9A-receptor-binding domain antibody 
construct specifically expressed on cDC1 induced higher 
specific antibody titers and prolonged the duration of 
vaccine action in  vivo, thus providing robust and sus-
tained systemic and mucosal protective immunity against 
the rapidly evolving SARS-CoV2 variant [59]. The opti-
mized synthesis of the Shiga toxin B subunit as a protein 

antigen delivery vehicle targeting DCs was also investi-
gated for its beneficial properties against the new, highly 
malignant variant [60, 61]. The fusion of a formyl peptide 
receptor-like 1 inhibitory protein to a spiny protein and 
an adjuvant with a lipidated formyl peptide receptor-
like 1 inhibitory protein promoted the capture of various 
SARS-CoV-2 variants by DC [62]. Nasal formulations of 
innovative innate immune stimulators, including Heber-
Nasvac, stimulate innate immune markers at sites of 
viral entry and systemic compartments (HLA class II in 
monocytes and lymphocytes) and activates DCs. These 
formulations are suitable for prophylaxis in high-risk 
groups, particularly the elderly and those at high risk 
of exposure to new variants with comorbidities. [63]
COVID-19 may also cause DC cytopathy, reducing the 
number and effecting the function of DCs [64]. In this 
regard, a recently developed intranasal complex consist-
ing of G5-BGG and antigen-expressing plasmid DNA 
induced antigen expression and dendritic cell maturation 
in the nasal mucosa exhibits the potential to serve as an 
effective carrier gene for intranasal vaccines [65]. Baso-
phils can act as APCs and play a protective role against 
COVID-19. However, its underlying mechanisms and 
treatments are unknown [66].

Serum IgG and fecal IgA levels were significantly ele-
vated after oral administration of recombinant Lactoba-
cillus strains expressing potential antigenic determinants 
of spiny, membrane, and envelope proteins The carrier 
Lactobacillus also affected macrophage polarization 
and interacted with DCs for better epitope display [67]. 
Dendritic cells in the lung, specifically those expressing 
CD11b + and CD103 + , have the ability to promote the 
expression of a4b7 and CCR9 in T cells, facilitating T cell 
homing to the gastrointestinal tract. This mechanism is 
crucial for the recruitment and maintenance of chronic 
inflammatory diseases in the intestines. Research into the 
crosstalk between lung-associated dendritic cells and gut 
immunity has been explored in further studies [68, 69]. 
Additionally, DCs from aged mice exhibit reduced toler-
ance compared with DCs from young mice. In contrast, 
the tolerogenic function of DCs was successfully restored 
by introducing Lactobacillus plantarum into the intes-
tines of aged mice. Therefore, the development of probi-
otic intestinal formulations will be helpful in improving 
immune responses to influenza vaccination and infection 
in elderly individuals [70].

bacterial infection
Tract infections, particularly lower respiratory tract 
infections, are a leading cause of death and disability, 
with S. pneumoniae being the major cause of lower res-
piratory tract infections [71]. There is concern regard-
ing the increasing antibiotic resistance of S. pneumoniae. 
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However, current guidelines indicate that most patients 
with community-acquired pneumonia can still be suc-
cessfully treated with antibiotic regimens that have been 
in-use for decades [72]. However, drugresistant strains 
and the reduced effectiveness of existing vaccines com-
plicate treatment, thus suggesting the need for continued 
research focused on new approaches [73]. The recom-
binant ABC protein SP0148 and its antiserum inhibited 
S. pneumoniae adhesion to human lung epithelial cells 
in a dose-dependent manner, produced a protective 
immune response against lethal doses of S. pneumoniae 
infection [74]. A novel lipidated adjuvant, the chitosan 
derivative OTMC, triggered the release of cytokines 
from DCs and produced IgG that also potentiated the 
immune response to the vaccine [75]. Pneumococcal 
surface protein A was expressed on the surfaces of all S. 
pneumoniae strains. The enzyme polymerized caffeic 
acid can be used as a serotype-independent universal 
nasal pneumococcal vaccine formulation, and vaccines 
constructed with Pneumococcal surface protein A trig-
gers a specific antibody response against pneumococ-
cal infection [76]. However, the detailed mechanisms of 
this response are poorly understood. It has been demon-
strated that targeting the Fc receptor with a fusion pro-
tein comprising pneumococcal surface protein A and IgG 
polarizes alveolar macrophages to an AM1 phenotype 
and increases the regular DC subpopulation of the lungs 
while enhancing Th1 cytokines and specific IgG and IgA 
levels [77]. The lipopolysaccharide bioactive fraction, 
Bacillus alkaloidus-producing lipid A, acts as an adjuvant 
to a nasal vaccine against pneumococcal surface protein 
A that stimulates DC to promote the production of the 
mucosal immune-enhancing cytokines, IL-6 and BAFF, 
and the formation of germinal centers in the lymph 
nodes, ultimately resulting in high levels of specific IgA 
and IgG responses [78]. Lung DC CD103 + and lung DC 
CD24 + are able to proficiently induce high levels of IgA 
and B cells to home to the gut [79]. In contrast, the chem-
ical binding of chitosan nanocapsules to S. pneumoniae 
surface protein A promotes DC maturation and antigen 
presentation, followed by peripheral blood mononuclear 
cells activation and lymphocyte differentiation [80]. Pol-
ysorbate transporter protein adjuvant induces DC and 
helper T cells responses using the PPAR- pathway, ulti-
mately resulting in a long-term memory response. [81]. 
Most pathogenic isolates express pneumococcal hemo-
lysin (PLY) and are required for virulence and host-to-
host transmission, and immunosuppressive interactions 
between Ply with MRC-1 expressed on AMs have been 
demonstrated in an experimental mouse model of lower 
respiratory tract infection. This mechanism also enables 
pathogens to penetrate MRC-1-expressing M2-type Møs 
and DCs within MRC-1-encapsulated endosomes [82, 

83]. A146Ply is a mutation in S. pneumoniae in which Ply 
is inactivated and intranasal administration significantly 
attenuates bacterial-induced iron death in lung tissue and 
macrophages as well as enhancing macrophage phagocy-
tosis [84]. CDC is an important virulence factor of PLY. 
A peptide that could bind to the virulence factor was 
designed, using docking to identify the interaction site 
with MRC-1.In vitro experiments showed that these pep-
tides blocked the production of inflammatory cytokines 
by human Møs, inhibited the uptake of bacteria by DCs 
through MRC-1, and prevented bacterial invasion into 
the epithelium in a 3D lung tissue model. Calcium phos-
phate nanoparticles have been developed as peptide 
nanocarriers in  vivo and can be used as an adjunctive 
therapy alongside antibiotics. [85].

Vaccines formulated with STING-activated cyclic 
dinucleotide adjuvants induce CD4 + T cells that sig-
nificantly protect against Mycobacterium tuberculo-
sis  [86]. The novel therapeutic DNA vaccine, rel Mtb, 
enhances specific T cell responses by increasing contact 
with immature DCs and exhibits maximal mycobacte-
riostatic activity in combination with isoniazid for intra-
nasal administration as well as robust systemic and local 
Th1 and Th17 responses [87]. BAdv 85C5-infected DCs 
express a robust transcriptome of genes that regulate 
antigen processing, ultimately leading to T cell expan-
sion [88]. The transmission of Mtb across the alveolar 
barrier involves the phagocytosis of inhaled bacteria by 
Ams, which then cross the alveolar barrier by exudation, 
a process known as the “Trojan horse” mechanism [89]. 
Møs are the first immune cells to encounter Mtb during 
an infection and serve as its main replicative ecosystem. 
The entry of Mtb into Møs through different receptors 
can activate different pathways that inhibit or promote 
bacterial replication; among these, the vitamin D path-
way promotes the polarization of Mtb-infected human 
Møs to enhance bacterial killing [90, 91]. Unstructured 
lipid carrier (NLC)-incorporated linezolid targets mac-
rophages in vitro and in vivo with potent clinical efficacy 
against drug-resistant tuberculosis [92].

Type 2 diabetes mellitus affects antigen presentation 
after tuberculosis infection, and the kinetics of Mtb pep-
tide-MHC II complex formation in human monocyted-
erived Møs are reduced at high glucose concentrations, 
thereby decreasing their ability to activate T cells. Nano-
particles containing all-trans retinoic acid in hostdirected 
therapy are used to treat patients with M. tuberculosis or 
diabetic tuberculosis by targeting macrophages [93–95].

Malignancy
KRAS mutations are targets for immunotherapy in non-
small-cell lung cancer, and intranasal immunization with 
nanoemulsion adjuvants combined with KRAS peptides 
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enhance KRAS-specific Th1 and Th17 responses as well 
as reduce tumor incidence [96]. A study using DC ther-
apy to target various tumor-associated antigens for lung 
cancer treatment was initiated by Kontani et  al. In this 
study, mature DCs loaded with the MUC1 peptide were 
injected into the supraclavicular region three times at 
2-week intervals [97]. The patients experienced a reduc-
tion in tumor size or tumor marker levels, suggesting 
that a DC vaccine targeting MUC1 could be used for 
cancer immunotherapy. Recently studied MUC -1 PLGA-
NA-NPs are being explored as potential candidates for 
investigating the antitumor effects in NSCLC xenograft 
models through inhalation [98]. The hr-8-PLGA@Ag/
CpG nanovaccine specifically binds to the endocytic 
receptor DEC-205, which is mainly found on cDC1, pro-
moting dendritic cell maturation and increasing anti-
gen cross-presentation. This process ultimately boosts 
immune responses against tumors mediated by CD8 + T 
cells [99]. Squalenebased nanoemulsions at 0.1%, alter 
mucosal characteristics and induce broad-spectrum 
antigenspecific cellular immunity after intranasal vacci-
nation. [100] mPLA/mRNA tumor vaccines by stimulat-
ing DC maturation, reprogramming of M2 macrophages 
into M1 macrophages, and crossactivation of innate and 
adaptive immune responses, ultimately providing ideas 
and perspectives for mRNA tumor vaccine applications 
in lung cancer and bone metastases treatment [101]. 
Intranasal administration of ECF with fucoidan pro-
moted the activation of DCs, natural killer cells, and T 
cells in mLNs, which is used in immunotherapy to treat 
metastatic lung cancer [102].

Conclusion
New vaccine developments, adjuvants, and immuniza-
tion strategies have gradually increased the potential of 
mucosal vaccines. However, the role of mucosal barri-
ers and vaccine safety has not been effectively identified. 
Therefore, efforts should still be made to explore effec-
tive alternatives. Several factors such as antigens, for-
mulations, routes of administration, adjuvants, animal 
models, and other factors should be considered for the 
development of safe and effective mucosal vaccines [103]. 
Most mucosal immunity is directed against plasma and 
epithelial cells as well as against crosstalk between DCs 
and macrophages. In addition, although there are few 
studies on other APC-based therapies, different classes 
of APCs elicit different immune responses to pathogens 
and have distinct mechanisms of action. Understanding 
their mechanisms of action is beneficial for exploring 
the potential roles of APCs in lung diseases, which may 
provide important insights into more effective thera-
peutic approaches for a wide range of conditions, from 
chronic to infectious lung diseases. However, APC-based 

therapies for lung diseases are still in the developmental 
stage. Most of the vaccination studies have introduced 
new treatment concepts but have not yet demonstrated 
significant clinical benefits and low toxicity. Therefore, 
further research is required to validate these findings.
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