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Always one step ahead: How pathogenic bacteria
use the type III secretion system to manipulate
the intestinal mucosal immune system
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Abstract

The intestinal immune system and the epithelium are the first line of defense in the gut. Constantly exposed to
microorganisms from the environment, the gut has complex defense mechanisms to prevent infections, as well as
regulatory pathways to tolerate commensal bacteria and food antigens. Intestinal pathogens have developed
strategies to regulate intestinal immunity and inflammation in order to establish or prolong infection. The
organisms that employ a type III secretion system use a molecular syringe to deliver effector proteins into the
cytoplasm of host cells. These effectors target the host cell cytoskeleton, cell organelles and signaling pathways.
This review addresses the multiple mechanisms by which the type III secretion system targets the intestinal
immune response, with a special focus on pathogenic E. coli.
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Review
The gut-associated lymphoid tissue
The intestinal lumen is exposed to the environment and
therefore in continuous contact with harmless as well as
pathogenic microorganisms. Thus, it is not surprising
that the gut is the biggest lymphoid organ in the body
and contains about 70% of the body’s immune cells
[1-3]. The gut-associated lymphoid tissue (GALT) uses a
range of mechanisms to protect the host from patho-
gens, while it at the same time tolerates commensal
microorganisms. Furthermore, the GALT needs to pre-
vent the invasion of harmful agents without affecting
the absorption of nutrients from the lumen.
GALT is comprised of the appendix, single lymphoid

follicles (Figure 1) in the small and large intestine, and
the Peyer’s patches (PP). The latter are clusters of folli-
cles and have a distinct architecture with germinal cen-
ters containing B cells and follicular dendritic cells
(DCs) which are surrounded by areas with T cells and
macrophages [2]. PP are covered by specialized micro-
folded epithelial cells, the M-cells, which make up the

follicle-associated epithelium (FAE). This epithelium
forms the interface between the luminal microorganisms
and the immune cells of the GALT [4]. PP have no
afferent lymph vessels and antigens are received directly
from the intestinal lumen. After the uptake of luminal
material by endocytosis and phagocytosis, the M-cells
deliver antigens and microbes to antigen-presenting
cells in the subepithelial dome of the PP, which subse-
quently present them to PP T cells [2]. PP DCs also
directly sample bacteria from the intestinal lumen by
sending protrusions through the epithelial layer without
disrupting epithelial integrity [5]. Therefore, follicles and
PP are an inductive site where microorganisms are
sensed and the appropriate immune response is initiated
[4]. In contrast, the lamina propria is an effector site;
after activation in PP, DCs migrate to the mesenteric
lymph nodes where they present antigens to B and T
cells and the immune response is amplified. Via expres-
sion of homing molecules, mainly the integrin alpha4-
beta7 and CCR9, the lymphocytes are then able to re-
enter the mucosal site where they contribute to immune
defense along the entire length of the intestine [6].
The gut has a wide range of strategies to fight infec-

tions. Amongst the non-specific mechanism are the
mucus layer which traps microorganisms, the secretion
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of anti-microbial agents such as defensins, trefoil factors
and proteases, intestinal peristalsis, and the natural
microbiota which compete with pathogens for epithelial
binding and nutrients [7-10]. Microorganisms are also
largely prevented from epithelial attachment by secre-
tory IgA (sIgA) which binds them in the lumen and
mucus [11]. Germinal center B cells receive multiple
activation and survival signals from follicular DCs in PP
upon encounter with bacterial products leading to the
generation of IgA secreting plasmablasts [12]. After acti-
vation and T cell-dependent class switching to IgA in
the PP, B cells eventually migrate to the lamina propria
where they reside as IgA secreting plasma cells [13,14].
Cellular defense mechanisms within the lamina propria
are crucial in reducing and dealing with invasion of
pathogens. The main cell population comprises CD4+ T
lymphocytes which, depending on the cytokine milieu,
respond by producing factors associated with a Th1
immune response which is crucial for the response to
intracellular pathogens and stimulates phagocytosis by
macrophages. A Th2 response is typically established
following infection with parasites and involves produc-
tion of IL-4, IL-5, IL-10, and IL-13 resulting in activa-
tion and recruitment of B cells, mast cells and
eosinophils [15].
The lamina propria also contains natural killer cells

which are thought to mediate intestinal homeostasis by
producing IL-22 and exhibit their cytotoxic functions
upon activation by T cells [16,17]. IL-22 has been
shown to be an important factor in the host defense

against enteral bacteria, like e.g. Citrobacter rodentium,
a murine pathogen which is used to study infections
with enteropathogenic E. coli (EPEC) and enterohaemor-
rhagic E. coli (EHEC) in humans [18]. Additional studies
highlighted the importance of IFNg-producing CD4+ T
cells in the defense against these bacteria [19].
Another layer of defense is located in the epithelium

where a large population of mainly CD8ab intraepithe-
lial T lymphocytes resides in the basolateral area,
between the epithelial cells [20]. Some studies demon-
strated cytolytic activity of these T cells which suggest
they might be involved in cancer surveillance and killing
of infected cells [21].

Recognition of bacteria in the intestine
The intestinal immune system faces the constant chal-
lenge of discriminating between the commensal micro-
biota and pathogens. The response to the latter is
usually rapid and results in the activation of innate and
adaptive immune mechanisms that lead to inflammation
and eradication of the pathogen, sometimes with consid-
erable damage to the intestinal mucosa. Non-pathogenic
bacteria that form the microbiota are also recognized by
the GALT [22]; however, the immune response to com-
mensals appears to be strictly controlled, and does not
lead to overt inflammation. How the GALT discrimi-
nates between these two categories of microorganisms,
commensals and pathogens, is complex and not fully
understood. However, DCs in GALT are of paramount
importance for responding to bacterial stimuli and the
initiation of a tolerogenic state by promoting the expres-
sion of anti-inflammatory molecules like IL-10 and
TGFbeta [23].
In the last two decades, with the discovery of toll-like

receptors (TLR) and Nod-like receptors (NLR) which
recognize pathogen-associated molecular patterns
(PAMPs), the knowledge about the recognition of
microbial structures by immune and epithelial cells has
dramatically increased [24]. These receptors specifically
bind ligands widely shared amongst pathogens. Well-
characterised examples of such ligands are bacterial cell
wall components such as peptidoglycans and lipopro-
teins (both binding to TLR2) or nucleic acid ligands
such as bacterial CpG DNA which binds to TLR9
[25,26]. Immune recognition via pattern-recognition
receptors is crucial for host defense and immune home-
ostasis, and dysfunction of these receptors has been
shown to be associated with gut inflammatory condi-
tions such as Crohn’s disease [27]. Binding of microbial
ligands to TLRs (besides TLR3) results in the activation
of a pro-inflammatory MyD88-dependent pathway that
leads to activation of the transcription factor NF-kap-
paB. Another signaling pathway that is critically involved
in inflammation is the mitogen-activated protein (MAP)

Figure 1 Follicles and PP are the inductive site for the mucosal
immune response. Micrograph of a human ileal lymphoid follicle
stained with hematoxylin & eosin. The follicle is covered by M-cells
which form the follicle-associated epithelium (FAE). Underneath the
dome area which holds dendritic cells, is a B cell follicle, surrounded
by a T cell-rich zone. Adjacent to the follicle are microvilli. LP =
lamina propria.
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kinase-cascade. Although not activated by microbial
ligands, this pathway is initiated by extracellular stimuli
like pro-inflammatory cytokines or mitogens [28]. Both
the NF-kappaB and MAPK pathway are activated in
intestinal infections by pathogens which use type III
secretion systems (T3SS) [29]. These pathways are also
amongst the known targets for T3SS effectors. An over-
view on how these pathways are affected during intest-
inal infection with pathogens that employ the T3SS is
discussed here, with special emphasis on EPEC and
EHEC. These two pathogens, also known as attaching
and effacing pathogens (A/E), are amongst the leading
causes for diarrheal diseases. EPEC is a big health con-
cern, especially for infants, in developing countries. An
EPEC infection can be asymptomatic, but the classical
feature of the infection is profuse watery diarrhea in
combination with vomiting. EHEC is responsible for
food-borne outbreaks of diarrheal diseases, with con-
taminated beef being the most common vehicle for
infection. Certain EHEC strains (e.g. O157:H7) produce
Shiga-like toxins which can cause potentially life threa-
tening complications like the hemolytic-uremic syn-
drome (HUS). This disease is characterized by acute
kidney failure, thrombocytopenia and hemolytic anemia
and affects mostly children. The mortality of HUS is
approximately 5-10% and it is therefore a medical emer-
gency requiring intensive clinical care.

Sustaining colonization by preventing bacterial
detachment and death of infected cells
Some of the most successful gram-negative pathogens
use the type 3 secretion system (T3SS), a molecular syr-
inge, to inject an arsenal of virulence effector proteins
directly into the cytoplasm of the host cells. The effec-
tors can then target and hijack various host cell func-
tions for the benefit of the pathogen [30]. The
increasing understanding of the variety of T3SS effectors
and their functions has given rise to the idea that for
every defense strategy used by the host, there might be
antagonistic effector proteins. Recent data gained from
research on the function of Shigella effectors, illustrate
this hypothesis [31]. One of the protective mechanisms
of the gut mucosa is the constant renewal and shedding
of epithelial cells at the top of the villi in the small
bowel and from the colon surface. If subjected to bac-
terial colonization, the enterocytes can undergo pro-
grammed cell death and detach from the extracellular
matrix into the lumen, preventing the pathogen crossing
the epithelium [32,33]. In vitro and in vivo data identi-
fied two Shigella effectors, IpaB and OspE, which coun-
teract the intestinal epithelial turnover and exfoliation
[34,35]. IpaB causes a cell cycle arrest of infected cells
by interacting with Mad2L2, an inhibitor of the ana-
phase promoting complex (APC) which regulates the

cell cycle [34]. In a rabbit ileal loop model, intestinal
crypts infected with Shigella that express an IpaB
mutant protein which is unable to interact with
Mad2L2, have a higher number of progenitor cells and
are less colonized than with the wild type strain. These
findings suggest that IpaB, by blocking intestinal cell
proliferation and renewal, prolongs Shigella colonization
[34]. Shigella also injects the effector OspE into entero-
cytes which stabilizes the adhesion of intestinal cells to
the extra-cellular matrix by targeting and modulating
the function of integrin-linked kinase (ILK), a modulator
of focal adhesion [35]. The interaction between OspE
and ILK enhances the presence of beta1-integrin at the
cell surface and prevents the disassembly of focal adhe-
sions. An in vivo study performed in a guinea pig colon
infection model showed reduced colonization and
pathogenicity of OspE mutant bacteria. This study sug-
gests that OspE enhances the infectivity of Shigella by
preventing the exfoliation of infected intestinal cells
[35].
Some EPEC and EHEC strains as well as the mouse

pathogen Citrobacter rodentium might also use a similar
strategy as they possess the effector EspO which has
strong homology with Shigella’s OspE [35,36]. The inhi-
bition of epithelial cell detachment is an emerging
theme in bacterial pathogenesis, and recent in vivo work
suggests that it is a strategy shared by all bacteria that
are able to bind human carcino-embryonic antigen-
related cell adhesion molecules (CEACAM), e.g. Neis-
seria gonorrhoeae, Neisseria meningitidis, Moraxella cat-
arrhalis, and Haemophilus influenzae [32,37].
Interestingly, some EPEC strains produce the effector

Cif which blocks the cell cycle of infected cells [38]. Cif
binds Nedd8, a ubiquitin-like protein and inhibits ned-
dylated Culling-RING ligases-induced (CLRs) ubiquiti-
nation of a variety of CLR substrates, such as the cell
cycle inhibitors p21waf1 and p27kip1 [39,40]. It is thus
possible that in EPEC, Cif acts like Shigella’s IpaB, and
also prolongs colonization of the gut mucosa by pre-
venting epithelial cell renewal.
Other work suggests that inhibition of the epithelial

renewal and exfoliation could indeed be an infective
strategy of EPEC and EHEC pathogens. Shames and co-
workers have demonstrated a role for the effector EspZ
in reducing the death and detachment of epithelial cells
infected with EPEC in vitro [41]. EspZ binds the trans-
membrane glycoprotein CD98 and enhance its effect on
beta1-integrin signaling and cell survival via activation
of focal adhesion kinase. EspZ also activates the pro-sur-
vival AKT pathway, which does not seem to rely on
CD98 binding [41].
A potent pro-survival activity has also been identified

for NleH1 and NleH2, two effectors produced by EPEC
and EHEC. NleHs inhibits apoptosis via various stimuli
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in epithelial cells, dependent on the binding to the anti-
apoptotic Bax inhibitor-1 [42]. The mechanism by
which NleH prevents cell death is independent of its
kinase function and remains to be determined.
Another effector reported to be potentially involved in

anti-apoptotic activity is the metalloprotease NleD
which prevents JNK-mediated pro-apoptotic signaling by
cleaving and inactivating JNK [43]. Apart from the effec-
tor EspZ, which is severely attenuated for virulence in
the mouse model [44], an essential role for other effec-
tors in virulence like NleHs and NleD have not been
established in different animal models [45,46]. Although
in vivo evidence is missing, these studies suggest that
EPEC and EHEC use EspO, EspZ, NleH, and NleD to
prevent or delay the exfoliation and apoptotic clearance
of the targeted cells in the intestinal epithelium and to
sustain bacterial colonization (Figure 2 and table 1).

Modulation of proinflammatory signaling pathways
The modulation of the host immune response by effec-
tors from Shigella, Salmonella, and Yersinia is increas-
ingly well understood. Detailed reviews on immune
modulation by these pathogens have previously been

published elsewhere [30,47]. EPEC, EHEC and C. roden-
tium pathogens have a common set of T3SS effectors
composed of seven LEE and a few non-LEE encoded
effectors like NleE, NleB, and NleH and show diversity
in the repertoire of other non-LEE encoded effectors.
The reference strains EHEC 0157:H7 Sakai, EPEC O127:
H6 strain E2348/69, EPEC O111:NM strain B171, and
Citrobacter rodentium have a total of 50, 21, 28 and 29
full length effector genes, respectively [48]. Surprisingly,
despite almost 20 years of research on the function of
EPEC and EHEC effectors, manipulation of immune
defenses in the gut had not been reported until recently;
perhaps because as a pathogen which adheres to the
surface of epithelial cells, it was not thought to come
into contact with host immune cells. The described
functions of effectors were mainly the modification of
the host cell cytoskeleton in relation to the formation of
intestinal attaching/effacing (A/E) lesions and the modi-
fication of epithelial tight-junctions in relation to the
alteration of intestinal permeability observed during
infection [49]. Some apparently contradictory results
have been published concerning the pro-or anti-inflam-
matory activity of EPEC and EHEC. Earlier work
demonstrated that the bacteria trigger a pro-inflamma-
tory response [50,51]. However, many studies using
epithelial cell lines now clearly show that whereas the
bacteria induce an inflammatory response with the
detection systems of the host cells, they are able to inhi-
bit the inflammatory pathways in a T3SS-dependent
manner [52,53]. By hampering the pro-inflammatory
response of epithelial cells, EPEC and EHEC are likely
to gain the advantage of reduced cytokine and chemo-
kine secretion which subsequently reduces the recruit-
ment of neutrophils into the affected site. Neutrophils
are effective at killing bacteria and release a variety of
anti-microbial factors; thus a reduced number and acti-
vation of these cells would prolong colonization [54].
Only very recently, anti-inflammatory activity has been
demonstrated for the EPEC and EHEC effectors NleE,
NleB, NleH, NleD and NleC (Figure 3 and table 1).
NleH1 was the first effector reported to inhibit NF-

kappaB in HeLa and HEK293T cell lines [55]. NleH1
and NleH2 both bind the human ribosomal protein S3
(RPS3) in the cytoplasm of infected cells. RPS3 is a non-
Rel NF-kappaB subunit and interacts with p65 to
increase the transcription of various pro-inflammatory
genes [56]. NleH1, but not NleH2, blocks the transcrip-
tion of RPS3/NF-kappaB-dependent genes by preventing
the nuclear translocation of RPS3 [55]. In a gnotobiotic
piglet infection model, animals infected with EHEC
mutated for nleH1 died more rapidly compared to pig-
lets infected with the wild-type or an nleH2 mutant.
The hypervirulent phenotype that was caused by the
nleH1 mutant, seemed to be due to a pronounced

Figure 2 EPEC uses several effector proteins to promote
bacterial adhesion. After binding to the epithelial cell, EPEC uses
the T3SS to inject effectors into the host cell cytoplasm via a
needle-like structure. Intimate adhesion to the host cell is secured
by rearrangement of the actin cytoskeleton and the formation of a
pedestal. Amongst the injected effectors are EspO, NleH1, NleH2,
EspZ, and CiF which modulate the cell cycle and apoptotic
regulation, resulting in reduced epithelial renewal and prolonged
bacterial adherence.
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inflammatory response [55]. NleHs are auto-phosphory-
lated serine threonine kinases and share homology with
the Shigella effector OspG which is known to inhibit
NF-kappaB [57]. The RPS3-mediated inhibition of
inflammation differs from OspG activity and is

independent of the kinase function [55]. It was recently
demonstrated that both NleH1 and NleH2 could inhibit
NF-kappaB in a kinase-dependent manner [58]. NleH1
and NleH2 prevent TNFalpha-mediated NF-kappaB acti-
vation by inhibiting IkappaBalpha ubiquitination and

Table 1 Effectors of EPEC/EHEC that modulate cell detachment, pro-inflammatory signaling, and phagocytosis

Effector Cellular
targetsa

Biochemical activity/
characteristicsb

Phenotype In vivo role

Inhibition of cell detachment and modulation of cell death

NleH1
NleH2

Bax
inhibitor-1
(BI-1)

Binds to N-terminal amino acid 1-
40 of BI-1. N-terminal aa 1-100 of
NleHs not required for binding to
BI-1

Inhibition of apoptosis induced via multiple
stimuli

Various roles reported in vivo. NleH
reduces the level of apoptotic
colonic cells in mouse model [42]

EspZ CD98 C-terminal amino acid domain 43-
99 required for CD98 binding

Prevent cell detachment. Enhance activation of
pro-survival FAK and AKT pathway. Binding to
CD98 promotes b1-integrin activation of FAK.

Mutant espZ attenuated for
colonization and hyperplasia in mice
[44]

NleD JNKs, p38 Zinc metalloprotease (motif
142HExxH146)

Cleaves MAP kinases JNK and p38 in the
activation loop. Reduce JNK pro-apoptotic activity

Enhance colonization in calves, no
role identified in mice and lamb
infection models [45,46]

Cif NEDD8 Deamidase of NEDD8 and ubiquitin Block cell cycle at G2/M and G1/S transitions [39] Unknown

EspO/
OspO

ILK (?) Shigella’s OspE C-terminal 68W
essential for activity is conserved in
EPEC/EHEC EspO/OpsO

Prevent cell detachment? Unknown

Inhibition of pro-inflammatory signaling

NleE Unknown C-terminal 208IDSYMK214 motif
essential for activity

Inhibits TNFa, IL-1b and PRRs mediated activation
of NF-kappaB and expression of pro-inflammatory
cytokines in epithelial and immune cells. Acts by
inhibition of I�Ba phosphorylation blocking p65
nuclear translocation

Slight role in colonization and
persistence reported [45,60]

NleC p65, p50,
c-Rel, I�Ba

Zinc metalloprotease (motif
183HExxH187)
N-terminal domain aa 33-64
required for p65 and p50 binding

Cleaves p65 and p50 to inhibit NF-kappaB
activation. Cleavage of c-Rel and I�Ba also
reported.

No role identified in mice and lamb
infection model [45,46]

NleB Unknown Unknown Inhibit TNFa-mediated NF-kappaB activation Required for colonization and
disease in mouse model [45,60]

NleH1 Ribosomal
protein S3
(RPS3)

Activity in N-terminal 139 amino
acid (N40 and K45 required for
RPS3 inhibition)

Prevent RPS3 nuclear translocation and
expression of RPS3-NF-kappaB dependent pro-
inflammatory genes

NleH1 EHEC mutant hypervirulent in
piglet infection model [55]

NleH1
and
NleH2

Unknown Serine-threonine kinase motif Prevent I�Ba ubiquitination and degradation Required for colonization and
reduction of inflammation in EPEC
mouse model [58]

NleD JNK, p38 Zinc metalloprotease (motif
142HExxH146)

Cleaves MAP kinases JNK and p38 in the
activation loop. Contributes to overall bacterial
mediated inhibition of IL-8 in vitro.

Mutant not attenuated in mice,
calve and lamb models [45,46]. Role
in colonization in STM screen in
calves

Inhibition of phagocytosis

EspF Unknown N-term 101 amino acid for anti-
phagocytic activity

Prevents PI3K-dependent phagocytosis of
bacteria;
Reduces uptake of EPEC bacteria in in vitro M cell
model

EspF mutant attenuated in mice
model. Specific role of anti-
phagocytic activity unknown [77,78]

EspB Myosin
proteins

Domain from amino acid 159-218
essential for myosin binding

Prevents bacterial phagocytosis via inhibition of
myosin-actin interaction

Citrobacter expressing EspB mutated
for myosin binding are attenuated
in mouse model [74]

EspJ Unknown Unknown Blocks FcgR and CR3-opsonophagocytosis Role in bacterial clearance
reported in mouse model [75]

EspH RhoGEFs Binds to DH-PH domain of RhoGEFs
and inhibits RhoGTPase signalling

Attenuates bacteria phagocytosis and FcgR-
mediated phagocytosis

EspH mutant not or slightly
attenuated for colonization in mice
and rabbit model [44]

a In relation to phenotype described; b Motif or biochemical activity required for phenotype described
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degradation and this activity is dependent on lysine resi-
dues present in the kinase domain of both effectors [58].
Streptomycin treated mice infected with EPEC mutated
for NleH1 and NleH2 were less colonized, showed
higher number of neutrophil infiltration and higher
serum level of KC (the mice homologue of IL-8) com-
pared to mice infected with the wild-type, suggesting
that NleH promotes colonization and is required for the
modulation of the host inflammatory response [58].
NleB is encoded on the same pathogenicity island as

NleE in EPEC and EHEC O157 strains, on the integra-
tive element IE6 and the O-island 122, respectively [59].
Presence of the O Island 122 (OI122) is associated with
EHEC outbreaks and the hemolytic uremic syndrome, a
severe complication of an EHEC infection [60]. Citro-
bacter rodentium strains that have a mutated NleB
effector, show an impaired ability to colonise the murine
intestine and fail to induce intestinal crypt hyperplasia
in the mouse model of infection [45,60]. NleB specifi-
cally inhibits NF-kappaB in response to TNFalpha sti-
mulation in epithelial cell lines [61]. NleB’s mode of
action has yet to be identified but is supposed to act

upstream of the IKK complex in the TNFalpha pathway,
as NleB is unable to prevent NF-kappaB activation in
cells following stimulation with IL-1beta or by bacterial
PAMPs [61].
Four independent studies have reported that NleC is a

metalloprotease that degrades the p65 NF-kappaB subu-
nit in epithelial cell lines and contributes to the overall
anti-inflammatory activity of both EPEC and EHEC
strains [43,62-64]. NleC carries the zinc metalloprotease
motif 183HEIIH187 which is essential for the proteolytic
activity on p65. In addition to p65, NleC also cleaves the
NF-kappaB p50 subunit and IkappaBalpha [62,63]. Mül-
hen and co-workers showed that the N-terminal motif
between amino acid 33 and 64 is required for binding to
p65 and p50 [62].
EPEC and EHEC produce another zinc metallopro-

tease, NleD, which specifically degrades MAPK JNK and
p38 and contributes to the overall inhibition of IL-8
chemokine secretion by infected cells [43]. Mutation of
the zinc metalloprotease motif in NleD, HEXXH,
abolishes JNK cleavage.
Colonization and pathogenicity of bacteria mutated for

NleC or NleD was not impaired in mice, lamb and calve
infection models. Therefore the importance of each of
the anti-inflammatory effectors remains to be identified
[44-46]. As suggested by in vitro data which show that
full IL-8 inhibition was dependent on the conjugated
activity of mainly NleE and NleC, but also NleB and
NleD, it is likely that the mutation of any of the effec-
tors is compensated in vivo by the activity of the other
[43,63,64]. It would be of interest to test the in vivo
pathogenicity of a strain deleted for all effectors target-
ing NF-kappaB to assess the importance of the anti-
inflammatory activity for bacterial colonization and
persistence.
NleE is a T3SS effector conserved among EPEC,

EHEC and Citrobacter rodentium strains. NleE is homo-
logous to OspZ which is present in Shigella spp strains
[65]. Different roles for colonization and persistence
have been reported for NleE in Citrobacter rodentium
mice models of infection [45,66]. Proteomic analysis of
cell free Citrobacter rodentium secretion profile indi-
cated that NleE, along with EspF and Tir, is the highest
secreted effector, suggesting it plays a key role in viru-
lence [67]. Indeed, NleE was shown to be a potent inhi-
bitor of NF-kappaB which prevents nuclear p65
translocation in epithelial cells in response to TNFalpha
and IL-1beta [61,68]. The mechanism by NleE blocks
NF-kappaB signaling is not known. It was, however, sug-
gested that NleE targets the IKK complex and prevents
the phosphorylation of IKKbeta [68]. Although so far no
functional domain was found that could explain NleE’s
mode of action, an analysis of the nleE sequence identi-
fied a motif 206IDSYMK214 of unknown function

Figure 3 Proinflammatory signaling pathways are a main
target of EPEC effector proteins. The effectors NleC, NleH1,
NleH2, NleE and NleB have been identified to target the NF-kappaB
complex at different levels which eventually prevents the nuclear
translocation of the p65 subunit. NleD degrades the MAP kinases
JNK and p38 which results in impaired signal transduction via these
pathways. By affecting these crucial inflammatory pathways, EPEC
actively impairs the cell to respond to the bacterial stimulus.
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which is not sufficient but essential for NleE’s anti-
inflammatory activity [61].
While other research on NleE showed its inhibiting

effect on NF-kappaB signaling in epithelial cells, our
group provided evidence that NleE inhibits the expres-
sion and production of pro-inflammatory cytokines IL-8,
TNFalpha, and IL-6 in human DCs which was due to
impaired NF-kappaB p65 nuclear translocation [69].
NleE injected by EPEC was shown to drastically reduce
the production of these cytokines in human monocyte-
derived DCs as well as PP DCs in vitro. We further
showed that EPEC injects its effectors into DCs that
reach through an epithelial layer in a transwell system.
These results suggest that EPEC can impair NF-kappaB
signaling not only in epithelial cells, but also hampers
the inflammatory response in the gut by injecting into
PP DCs that sample the bacteria from the lumen. Cer-
tain EPEC strains target the FAE early on in infection
[70]. The fact that EPEC can impair signaling in PP DCs
when they encounter them at the FAE might explain
this phenomenon.

Preventing phagocytosis
Phagocytosis is a receptor-mediated process and occurs
in two different ways: via the direct binding of the parti-
cle to specific receptors at the surface of the phagocyte
or via earlier opsonisation of the particle by IgG or the
C3bi complement fragment [71]. IgG and C3bi subse-
quently bind to the FcgammaR or Complement receptor
3 (CR3), respectively, at the surface of the cell. EPEC
inhibits phagocytosis in infected macrophages [72].
Furthermore, EPEC blocks both the opsonin-dependent
and independent phagocytic pathways in vitro by inject-
ing the four T3SS effectors EspF, EspB, EspJ, and EspH.
EspF from both EPEC and EHEC prevents phagocyto-

sis by macrophages and the uptake by M cells in in
vitro models (table 1) [73-77]. EspF is a multifunctional
effector implicated in various others aspect of pathogen-
esis. Amongst them are the alteration of the intestinal
epithelial tight-junctions, the effacement of the brush
border microvilli, mitochondrial-dependant apoptosis,
the nucleolar disruption and the targeting of various cel-
lular proteins like the neuronal Wiskott-Aldrich syn-
drome protein (N-WASP), cytokeratin 18, anti-apoptotic
Abcf2 or sorting nexin 9 (Snx9), a protein involved in
vesicles trafficking [78]. The mechanism by which EspF
prevents phagocytosis is still unknown and a study by
Quitard and coworkers showing that the N-terminal 101
amino acid domain of EspF is essential suggests that the
binding to proteins like N-WASP, actin or SNX9 are
not required to prevent the uptake by macrophages [78].
Contradictory to its anti-phagocytic activity, a role for
EspF in promoting enterocyte invasion has recently
been described and was shown to depend on the

interaction between EspF and SNX9 [79]. EspJ from
EPEC and EHEC does not block phagocytosis of non-
opsonized bacteria but prevents both the FcgammaR
and CR3 opsonin-dependant phagocytosis of particles by
macrophages or FcgammaR- or CR3-transfected cells
[75]. The mechanism by which EspJ blocks opsonopha-
gocytosis remains to be identified. EspB hampers phago-
cytosis by binding and inhibiting host myosin functions
which are required for phagocytosis of non-opsonized
bacteria [74]. EspH is the only effector reported to inhi-
bit both opsono- and non-opsonophagocytosis. It binds
to the DH-PH domain of several Rho GTPase exchange
factors (RhoGEF), preventing activation of Rho GTPases
and inducing a general inhibition of actin polymerisation
which would explain the inhibition of phagocytosis [73].
The identification of anti-phagocytic activity of so far
four effectors translocated by EPEC and EHEC suggest
their importance for the in vivo pathogenesis. A recent
paper reported that the effector EspG targets ARF6
GTPases which results in the reprogramming of endo-
membrane trafficking [80]. This finding raises the ques-
tion whether EspG also plays a role in the general anti-
phagocytic activity as ARF6 is essential for FcgammaR-
mediated phagocytosis [81].
Although EPEC is a non-invasive pathogen, its muco-

sal uptake has been reported in various in vitro and in
vivo studies [82]. The relevance of EPEC invasion for
pathogenesis is not known but might play a role in per-
sistence of the pathogen inside the host. Since EPEC
and EHEC mediate disease from their luminal position,
one might wonder how relevant the interaction of the
bacteria with professional phagocytic cells is during
infection. EPEC is known to target the FAE in the gut
[70], so the inhibition of its own uptake, which was
observed under in vitro conditions [76], could reflect the
inhibition of its M cells transcytosis resulting in immune
evasion. On the other hand, in vivo studies with Citro-
bacter rodentium in mice have shown that the activity
of neutrophils were necessary to clear the infection, sug-
gesting that at some point during the infection the bac-
teria interact with phagocytic cells [83].

Conclusion
Pathogenic bacteria have evolved alongside their hosts,
developing sophisticated mechanisms and effector pro-
teins to manipulate the host cells on multiple levels.
Not only do bacteria which use the T3SS secure their
attachment to epithelial cells by altering the cytoskele-
ton, they also actively prevent phagocytosis in the gut
and impair the immune response by interfering with
pro-inflammatory signaling pathways. While these mod-
ulatory strategies might not be clinically detrimental to
infected individuals, the bacteria gain the advantage of
facilitated and prolonged colonization in the gut. The
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variety of immuno-modulatory effectors in T3SS-
employing pathogens might also explain why e.g. EPEC
shows a tropism for the GALT, since this is the site
where the bacteria encounter DCs which they modulate
to hamper the initiation of the intestinal immune
response.
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