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Abstract

morphology and cognition of HIVE.

Background: TNFRSF11B computational development network construction and analysis of frontal cortex of HIV
encephalitis (HIVE) is very useful to identify novel markers and potential targets for prognosis and therapy.

Methods: By integration of gene regulatory network infer (GRNInfer) and the database for annotation, visualization
and integrated discovery (DAVID) we identified and constructed significant molecule TNFRSF11B development
network from 12 frontal cortex of HIVE-control patients and 16 HIVE in the same GEO Dataset GDS1726.

Results: Our result verified TNFRSF11B developmental process only in the downstream of frontal cortex of HIVE-
control patients (BST2, DGKG, GAS1, PDCD4, TGFBR3, VEZF1 inhibition), whereas in the upstream of frontal cortex of
HIVE (DGKG, PDCD4 activation) and downstream (CFDP1, DGKG, GASI1, PAX6 activation; BST2, PDCD4, TGFBR3, VEZF1
inhibition). Importantly, we datamined that TNFRSF11B development cluster of HIVE is involved in T-cell mediated
immunity, cell projection organization and cell motion (only in HIVE terms) without apoptosis, plasma membrane
and kinase activity (only in HIVE-control patients terms), the condition is vital to inflammation, brain morphology
and cognition impairment of HIVE. Our result demonstrated that common terms in both HIVE-control patients and
HIVE include developmental process, signal transduction, negative regulation of cell proliferation, RNA-binding,
zinc-finger, cell development, positive regulation of biological process and cell differentiation.

Conclusions: We deduced the stronger TNFRSF11B development network in HIVE consistent with our number
computation. It would be necessary of the stronger TNFRSF11B development function to inflammation, brain

Background

The neurodegenerative process in HIV encephalitis
(HIVE) is associated with cognitive impairment with
extensive damage to the dendritic and synaptic struc-
ture. Several mechanisms might be involved in including
release of neurotoxins, oxidative stress and decreased
activity of neurotrophic factors [1]. The effect of HIV
on brain has been studied by several researchers. Such
as, decreased brain dopamine transporters are related to
cognitive deficits in HIV patients with or without
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cocaine abuse; Magnetic resonance imaging and spectro-
scopy of the brain in HIV disease; Analysis of the effects
of injecting drug use and HIV-1 infection on 18F-FDG
PET brain development [2-4]. TNFRSF11B computa-
tional development network construction and analysis of
the frontal cortex of HIV encephalitis (HIVE) is very
useful to identify novel markers and potential targets for
prognosis and therapy.

TNFRSF11B is one out of 50 genes identified as high
expression in frontal cortex of HIV encephalitis (HIVE)
vs HIVE-control patients. TNFRSF11B has been proved
to be concerned with molecular function of receptor,
and biological process of developmental processes, ske-
letal development and mesoderm development (DAVID
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database). TNFRSF11B’s relational study also can be
seen in these papers [5-10]. However, the molecular
mechanism concerning TNFRSF11B development con-
struction in HIVE has little been addressed.

In this paper, by integration of gene regulatory net-
work infer (GRNInfer) and the database for annotation,
visualization and integrated discovery (DAVID) we iden-
tified and constructed significant molecule TNFRSF11B
development network from 12 frontal cortex of HIVE-
control patients and 16 HIVE in the same GEO Dataset
GDS1726. Our result verified TNFRSF11B developmen-
tal process only in the downstream of frontal cortex of
HIVE-control patients (BST2, DGKG, GAS1, PDCD4,
TGFBR3, VEZFI inhibition), whereas in the upstream of
frontal cortex of HIVE (DGKG, PDCD4 activation) and
downstream (CFDP1, DGKG, GAS1, PAX6 activation;
BST2, PDCD4, TGFBR3, VEZFI inhibition). Importantly,
we datamined that TNFRSF11B development cluster of
HIVE is involved in T-cell mediated immunity, cell pro-
jection organization and cell motion (only in HIVE
terms) without apoptosis, plasma membrane and kinase
activity (only in HIVE-control patients terms), the con-
dition is vital to inflammation, brain morphology and
cognition impairment of HIVE. Our result demonstrated
that common terms in both HIVE-control patients and
HIVE include developmental process, signal transduc-
tion, negative regulation of cell proliferation, RNA-bind-
ing, zinc-finger, cell development, positive regulation of
biological process and cell differentiation, therefore we
deduced the stronger TNFRSF11B development network
in HIVE consistent with our number computation. It
would be necessary of the stronger TNFRSF11B devel-
opment function to inflammation, brain morphology
and cognition of HIVE. TNFRSF11B development inter-
action module construction in HIVE can be a new route
for studying the pathogenesis of HIVE. Our construction
of TNFRSF11B development network may be useful to
identify novel markers and potential targets for prog-
nosis and therapy of HIVE.

Methods

Microarray Data

We used microarrays containing 12558 genes from 12
frontal cortex of HIVE-control patients and 16 HIVE in
the same GEO Dataset GDS1726 [1]. HIVE-control
patients mean normal adjacent frontal cortex tissues of
HIV encephalitis (HIVE) and no extensive damage to
the dendritic and synaptic structure.

Gene Selection Algorithms

50 molecular markers of the frontal cortex of HIVE
were identified using significant analysis of microarrays
(SAM). SAM is a statistical technique for finding signifi-
cant genes in a set of microarray experiments. The
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input to SAM is gene expression measurements from a
set of microarray experiments, as well as a response
variable from each experiment. The response variable
may be a grouping like untreated, treated, and so on.
SAM computes a statistic d; for each gene i, measuring
the strength of the relationship between gene expression
and the response variable. It uses repeated permutations
of the data to determine if the expression of any genes
is significantly related to the response. The cutoff for
significance is determined by a tuning parameter delta,
chosen by the user based on the false positive rate. We
normalized data by log2, and selected two class unpaired
and minimum fold change = 1.52. Here we chose the 50
top-fold significant (high expression genes of HIVE
compared with HIVE-control patients) genes under the
false-discovery rate and g-value as 9.12%. The g-value
(invented by John Storey [11]) for each gene is the low-
est false discovery rate at which that gene is called sig-
nificant. It is like the well-known p-value, but adapted
to multiple-testing situations.

Network Establishment of Candidate Genes

The entire network was constructed using GRNInfer
[12] and GVedit tools. GRNInfer is a novel mathematic
method called GNR (Gene Network Reconstruction
tool) based on linear programming and a decomposition
procedure for inferring gene networks. The method the-
oretically ensures the derivation of the most consistent
network structure with respect to all of the datasets,
thereby not only significantly alleviating the problem of
data scarcity but also remarkably improving the recon-
struction reliability. The following Equation (1) repre-
sents all of the possible networks for the same dataset.

A

J=(X-AUAVT +YVT =J+yvT @

We established network based on the 50 top-fold dis-
tinguished genes and selected parameters as lambda 0.0
because we used one dataset, threshold 0.000001.
Lambda is a positive parameter, which balances the
matching and sparsity terms in the objective function.
Using different thresholds, we can predict various net-
works with different edge density.

Functional Annotation Clustering

The DAVID Gene Functional Clustering Tool provides
typical batch annotation and gene-GO term enrichment
analysis for highly throughput genes by classifying them
into gene groups based on their annotation term co-
occurrence [13,14]. The grouping algorithm is based on
the hypothesis that similar annotations should have
similar gene members. The functional annotation clus-
tering integrates the same techniques of Kappa statistics
to measure the degree of the common genes between
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two annotations, and fuzzy heuristic clustering to clas-
sify the groups of similar annotations according to
kappa values.

Results

Identification of HIVE Molecular Markers

TNFRSF11B is one out of 50 genes identified as high
expression in frontal cortex of HIV encephalitis (HIVE)
vs HIVE-control patients. We normalized data by log2,
and selected two class unpaired and minimum fold
change = 1.52. Here we chose the 50 top-fold significant
(high expression genes of HIVE compared with HIVE-
control patients) genes under the false-discovery rate
and q-value as 9.12%. We identified potential HIVE
molecular markers and chose the 50 top-fold significant
positive genes from 12558 genes from 12 frontal cortex
of HIVE-control patients and 16 HIVE in the same
GEO Dataset GDS1726 including tumor necrosis factor
receptor superfamily member 11b (TNFRSF11B), pro-
grammed cell death 4 (PDCD4), diacylglycerol kinase
gamma (DGKG), craniofacial development protein 1
(CFDP1), growth arrest-specific 1 (GASI), paired box 6
(PAX6), bone marrow stromal cell antigen 2 (BST2),
transforming growth factor beta receptor III (TGFBR3),
vascular endothelial zinc finger 1 (VEZFI), etc. (see
appendix).

Identification of TNFRSF11B Up- and Down-stream
Development Cluster in Frontal Cortex of HIVE-Control
Patients and HIVE by DAVID

We first datamined 4 lists of TNFRSFIIB up- and
down-stream genes from 12 frontal cortex of HIVE-con-
trol patients and 16 HIVE by GRNInfer respectively.
With inputting 4 lists into DAVID, we further identified
TNFRSF11B up- and down-stream development cluster
of HIVE-control patients and HIVE. TNFRSF11B devel-
opment cluster terms only in frontal cortex of HIVE-
control patients cover apoptosis, plasma membrane and
kinase activity, as shown in (Figure 1A, C). However,
TNFRSF11B development cluster terms only in frontal
cortex of HIVE contain T-cell mediated immunity, cell
projection organization and cell motion, as shown in
(Figure 1B, D). TNFRSF11B development cluster terms
both in frontal cortex of HIVE-control patients and
HIVE include developmental process, signal transduc-
tion, negative regulation of cell proliferation, RNA-bind-
ing, zinc-finger, cell development, positive regulation of
biological process and cell differentiation, as shown in
(Figure 1A, B, C, D).

In frontal cortex of HIVE-control patients, TNFRSF11B
upstream showed little results without developmental
process, as shown in (Figure 1A). In frontal cortex of
HIVE, TNFRSF11B upstream modules mainly cover
developmental process (DGKG, PDCD4, TNFRSFI11B),
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etc., as shown in (Figure 1B). In frontal cortex of HIVE-
control patients, TNFRSF11B downstream modules
mainly consist of developmental process (BST2, DGKG,
GAS1, PDCD4, TGFBR3, VEZF1, TNFRSFI11B), etc., as
shown in (Figure 1C). In frontal cortex of HIVE,
TNFRSF11B downstream modules mainly contain devel-
opmental process (CFDP1, DGKG, BST2, PDCD4, GAS1,
PAX6, TGFBR3, VEZFI, TNFRSF11B), etc., as shown in
(Figure 1D).

TNFRSF11B Up- and Down-stream Development Network
Construction in Frontal Cortex of HIVE-Control Patients
and HIVE

In frontal cortex of HIVE-control patients, TNFRSFI11B
upstream development network appeared no result, as
shown in (Figure 2A), whereas in frontal cortex of
HIVE, TNFRSF11B upstream development network
showed that DGKG, PDCD4 activate TNFRSFI1B, as
shown in (Figure 2B).

In frontal cortex of HIVE-control patients, TNFRSF11B
downstream development network reflected that
TNFRSF11B inhibits BST2, DGKG, GAS1, PDCD4,
TGFBR3, VEZFI, as shown in (Figure 2C), whereas in
frontal cortex of HIVE, TNFRSF11B downstream devel-
opment network appeared that TNFRSF11B activates
CFDPI1, DGKG, GAS1, PAX6 and inhibits BST2, PDCD4,
TGFBR3, VEZF1I, as shown in (Figure 2D).

Discussion

We have already done some works in this relative field
about gene network construction and analysis presented
in our published papers [15-19]. By integration of
gene regulatory network infer (GRNInfer) and the data-
base for annotation, visualization and integrated discov-
ery (DAVID) we constructed significant molecule
TNFRSF11B development network and compared
TNFRSF11B up- and down-stream gene numbers of
activation and inhibition between HIVE-control patients
and HIVE (Table 1).

In TNFRSF11B developmental process of upstream
network of frontal cortex of HIVE-control patients there
was no result, whereas in that of HIVE, our integrative
result reflected that DGKG, PDCD4 activate
TNFRSF11B. In TNFRSFI11B developmental process of
downstream network of HIVE-control patients, our inte-
grative result illustrated that TNFRSF11B inhibits BST2,
DGKG, GAS1, PDCD4, TGFBR3, VEZFI1, whereas in
that of HIVE, TNFRSF11B activates CFDP1, DGKG,
GASI, PAX6 and inhibits BST2, PDCD4, TGFBR3,
VEZF1 (Figure 1, 2; Table 2). PAX6 is identified by
molecular function of transcription factor, homeobox
transcription factor, nucleic acid binding and DNA-
binding protein, and it is involved in biological process
of nucleoside, nucleotide and nucleic acid metabolism,
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Figure 1 TNFRSF11B up- and down-stream development cluster in frontal cortex of HIVE-control patients by DAVID (A, C). TNFRSF11B
up- and down-stream development cluster by DAVID in frontal cortex of HIVE (B, D). Gray color represents gene-term association positively
reported, black color represents gene-term association not reported yet.

mRNA transcription, mRNA transcription regulation,

developmental processes, neurogenesis, segment specifi-

cation and ectoderm development (DAVID database).
PAXG6’s relational study also can be presented in these

papers [20-25]. DGKG has been proved to be concerned

function consists of mRNA processing factor, mRNA
splicing factor, kinase modulator, dehydrogenase and
with molecular function of kinase, and biological process

kinase activator, and it is concerned with biological pro-
of lipid, fatty acid and steroid metabolism, signal trans-

cess of glycolysis, amino acid catabolism, pre-mRNA
processing, mRNA splicing, cell proliferation and differ-

entiation (DAVID database). GASI’s relational study
duction, intracellular signaling cascade and lipid meta-

also can be presented in these papers [30-33]. PDCD4 is

relevant to molecular function of nucleic acid binding,

bolism (DAVID). DGKG’s relational study also can be translation factor, translation elongation factor and mis-
presented in these papers [26-29]. GASI’s molecular

cellaneous function, and biological process of protein
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(C)

empty cycle represents inhibition.

Figure 2 TNFRSF11B up- and down-stream development network construction in frontal cortex of HIVE-control patients by infer (A, C).
TNFRSF11B up- and down-stream development network construction in frontal cortex of HIVE by infer (B, D). Arrowhead represents activation,

metabolism and modification, protein biosynthesis,
apoptosis, induction of apoptosis (DAVID). PDCD4’s
relational study also can be presented in these papers
[34-39]. CFDP1 has been reported to have molecular
function of mRNA splicing factor, select calcium bind-
ing proteins and KRAB box transcription factor, and to
be concerned with biological process of mRNA

transcription regulation and cell motility (DAVID data-
base). CFDPI’s relational study also can be presented in
these papers [40-44]. We gained the positive result of
TNFRSF11B developmental process through the net
numbers of activation minus inhibition compared with
HIVE-control patients and predicted possibly the
increase of TNFRSF11B developmental process in HIVE.

Table 1 Up- and down-stream gene numbers of activation and inhibition of each module with TNFRSF11B gene in
TNFRSF11B development cluster between frontal cortex of HIVE-control patients and HIVE

Term TNFRSF11B upstream TNFRSF11B downstream

con(act) con(inh) exp(act) exp(inh) con(act) con(inh) exp(act) exp(inh)
Apoptosis 1 1 1 1
Signal Transduction 2 1 4 4 4 5
Developmental Process 2 0 0 6 4 4

con represents control (HIVE-control patients), exp: experiment (HIVE), act: activation, inh: inhibition.
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Table 2 Activation and inhibition gene names of TNFRSF11B up- and down-stream development cluster in frontal

cortex of HIVE-control patients and HIVE.

Term TNFRSF11B upstream
con(act) con(inh) exp(act) exp(inh)
Developmental process DGKG, PDCD4
Term TNFRSF11B downstream
con(act) con(inh) exp(act) exp(inh)

Developmental process

BST2, DGKG, GAS1, PDCD4, TGFBR3, VEZF1

CFDP1, DGKG, GASI1, PAX6 BST2, PDCD4, TGFBR3, VEZF1

con represents control (HIVE-control patients), exp: experiment (HIVE), act: activation, inh: inhibition.

Importantly, we datamined that TNFRSF11B develop-
ment cluster of HIVE is involved in T-cell mediated
immunity, cell projection organization and cell motion
(only in HIVE terms) without apoptosis, plasma mem-
brane and kinase activity (only in HIVE-control patients
terms), the condition is vital to inflammation, brain mor-
phology and cognition impairment of HIVE. Our result
demonstrated that common terms in both HIVE-control
patients and HIVE include developmental process, signal
transduction, negative regulation of cell proliferation,
RNA-binding, zinc-finger, cell development, positive reg-
ulation of biological process and cell differentiation,
therefore we deduced the stronger TNFRSF11B develop-
ment network in HIVE consistent with our number com-
putation. Some researchers indicated that tumor necrosis
factor receptor studied to relate with inflammation, brain
morphology and cognition [45,46]. Therefore, we pre-
dicted the stronger TNFRSF11B development function in
HIVE. It would be necessary of the stronger TNFRSF11B
development function to inflammation, brain morphol-
ogy and cognition of HIVE.

Conclusions

In summary, we deduced the stronger TNFRSFI11B
developmental process in HIVE. It would be necessary
of the stronger TNFRSF11B development function to
inflammation, brain morphology and cognition of HIVE.
TNFRSF11B development interaction module construc-
tion in HIVE can be a new route for studying the patho-
genesis of HIVE.
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