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Abstract
Background: IL-2 has classically been considered a cytokine that regulates T cell proliferation and differentiation,
signaling through its heterotrimeric receptor (IL-2R) consisting of α (CD25), β (CD122), γ chains (CD132).
Expression of IL-2R has also been detected in mucosal epithelial cells. Soluble IL-2Rα (CD25) has been reported
as an inflammatory marker. We evaluated the expression of CD25 and CD122 in the ocular surface epithelium
and investigated the mechanism of proteolytic cleavage of CD25 from these cells.

Methods: Desiccating stress (DS) was used as an inducer of matrix metalloproteinase 9 (MMP-9). DS was
created by subjecting C57BL/6 and MMP-9 knockout (BKO) mice and their wild-type littermates (WT) mice to a
low humidity and drafty environment for 5 days (DS5). A separate group of C57BL/6 mice was subjected to DS5
and treatment with topical 0.025% doxycycline, a MMP inhibitor, administered QID. The expression of CD25 and
CD122 was evaluated in cryosections by dual-label laser scanning confocal microscopy. Western blot was used
to measure relative levels of CD25 in epithelial lysates. Gelatinase activity was evaluated by in situ zymography.
Soluble CD25 in tear fluid was measured by an immunobead assay.

Results: CD25 and CD122 were abundantly expressed in cornea (all layers) and conjunctiva epithelia (apical and
subapical layers) in nonstressed control mice. After desiccating stress, we found that immunoreactivity to CD25,
but not CD122, decreased by the ocular surface epithelia and concentration of soluble CD25 in tears increased
as MMP-9 staining increased. CD25 was preserved in C57BL/6 mice topically treated with an MMP-9 inhibitor and
in MMP-9 knock-out mice. MMP-9 treatment of human cultured corneal epithelial cells decreased levels of CD25
protein in a concentration dependent fashion.

Conclusion: Our results indicate that functional IL-2R is produced by the ocular surface epithelia and that CD25
is proteolytic cleaved to its soluble form by MMP-9, which increases in desiccating stress. These findings provide
new insight into IL-2 signaling in mucosal epithelia.
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Background
IL-2 is a pleiotropic cytokine that has been identified to
play a pivotal role in regulating the adaptive immune
response [1]. Its multiple functions include stimulating
proliferation of activated T cells (CD4-, CD8-, CD4-CD8+,
CD4+ and CD8+ lineage), proliferation and immu-
noglobulin synthesis by activated B cells, generation, pro-
liferation and activation of NK cells, differentiation and
maintenance of FoxP3+CD4+CD25+ T regulatory cells,
and activation-induced cell death by increasing the tran-
scription and expression of Fas-Ligand (Fas-L) on CD4+T
cells [2-5].

IL-2 signals through its heterotrimeric receptor consisting
of α (IL-2Rα, CD25), β (IL-2Rβ, CD122) and γ (IL-2Rγ,
CD 132) chains [1,6]. The γ chain, also referred to as the
common cytokine receptor chain, is shared by receptors
for multiple cytokines including IL-2, IL-4, IL-7, IL-9, IL-
15 and IL-21 [7]. IL-2R expression has been detected on
non-hematopoetic cells, including mucosal epithelia. The
IL-2Rβ chain (CD122) was previously detected on the IEC
rat intestinal epithelial cell line and primary rat intestinal
epithelial cultures [8]. IL-2 treatment of these intestinal
epithelial cells was noted to stimulate production of TGF-
β [9].

IL-2Rα is an essential component of the IL-2R. IL-2Rα
knock-out mice are phenotypically similar to IL-2 knock-
outs, both are resistant to activation-induced cell death
and develop severe autoimmunity and lymproliferative
syndromes including Sjögren's syndrome (SS) like disease
[10-12]. CD25 immunoreactivity in epithelial cells and
lymphocytes was previously found in minor salivary
glands obtained from patients with SS [13-15]. CD25
expression by the mouse corneal epithelium has also been
reported [16].

Soluble CD25, generated by proteolytic cleavage from
cells [17,18], is recognized as a marker of inflammation in
bodily fluids, including serum, urine and tears [18-21].
Increased levels of CD25 in the serum is considered a
marker of disease activity in many systemic autoimmune
diseases [22-25], including SS [26,27]. The mechanism by
which soluble CD25 is generated in mucosal sites has not
been completely elucidated.

We hypothesized that a functional IL-2R is expressed by
the ocular surface epithelia and that cell membrane CD25
decreases in dry eye, a condition associated with increased
protease activity on the ocular surface.

The purpose of this study was to evaluate if functional IL-
2Rα (CD25) is expressed by the ocular surface epithelia
(mouse and human) and to evaluate the effects of experi-
mentally induced desiccating stress in mice on cell associ-
ated and soluble CD25 in the tears.

Methods
This research protocol was approved by the Baylor College
of Medicine Center for Comparative Medicine and it con-
formed to the standards in the Association for Research in
Vision and Ophthalmology (ARVO) Statement for the use
of animals in ophthalmic and vision research.

Animals and mouse model of dry eye
To evaluate the role of MMP-9 in CD25 expression, we
used our murine desiccating stress models (DS) which has
been reported to increase MMP-9 activity on the ocular
surface [28,29]. DS was induced in 6-8 week old C57BL/
6, Jackson Laboratories, Bar Harbor, ME) for 5 days
(DS5), without (n = 40) or with (n = 18) topical therapy
4 times a day (1 μL/eye bilaterally of 0.025% doxycycline
preservative free, DS5+Doxy, Leiter's Pharmacy, San Jose,
CA) as previously reported [28-32]. The doxycycline was
freshly prepared and shipped within 24 hours. Doxycy-
cline has been shown to be a MMP inhibitor in a variety
of tissues [29,33,34]. A group of age and gender matched
C57BL/6 mice (n = 40) without dry eye served as non-
stressed controls (NS).

To confirm the role of MMP-9 (gelatinase B) on CD25
expression, DS5 was also induced in MMP-9 knockout
mice (referred to as BKO mice, created on a 129SvEv/CD-
1 mixed background as previously reported [35], n = 6)
and their wild-type littermates of both genders (GelB +/+,
referred as WT, n = 6). A separate group of age and gender
matched BKO and WT mice (n = 6/strain) without dry eye
served as NS controls.

Nonstressed CD25 knock-out (CD25KO, B6.129S4-
IL2ratm1Dw/J strain, n = 3) mice were purchased from Jack-
son Laboratories and were used at 8 weeks of age.

Exogenous administration of IL-2
To evaluate the role of IL-2 stimulation on Fas-L expres-
sion, NS C57BL/6 mice (n = 3) received bilateral subcon-
junctival injections of recombinant murine IL-2 (10 ng/
mL/eye/injection, dissolved in 20 μL of 0.1% bovine
serum albumin (BSA) in PBS, R&D Systems, Minneapolis,
MN) at days 0, 2 and 4. Vehicle control mice (n = 3)
received bilateral subconjunctival injections (20 μL/eye)
of 0.1% BSA in PBS on the same schedule. Mice were euth-
anized on day 5.

Tear fluid collection and CD25 Luminex Immunobead 
assay
Tear fluid washings were collected from twelve C57BL/6
mice per group (NS, DS5, DS5+Doxy), and twelve BKO
and twelve NLM per group (NS, DS5) in 3 independent
experiments using a previously reported method [36].
Briefly, 1.5 μL of PBS+0.1% BSA was instilled into the con-
junctival sac. The tear fluid and buffer were collected with
a 1-μL volume glass capillary tube (Drummond Scientific
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Co., Broomhall, PA) by capillary action from the tear
meniscus in the lateral canthus) and stored at -80°C until
the assay was performed. One sample consisted of tear
washings from both eyes of two mice pooled (4 μL) in
mouse CD25 assay buffer (6 μL). There were a total of 6
samples from each group of mice.

CD25 concentrations in tear washings of NS, DS5 and
DS5+Doxy groups were measured using a sensitive, fluo-
rescent bead-based sandwich immuno assay (Biosource,
Invitrogen, Carlsbad, CA). Briefly, 10 μL of murine tear
washings or buffer alone (blank controls) were added to
wells containing the appropriate 1× beads coupled to
anti-CD25 antibody. Serial dilutions of CD25 were added
to wells in the same plate as the tear samples to generate a
standard curve. The plate was incubated overnight at 4°C
to capture CD25 by the antibody-conjugated fluorescent
beads. After 3 washes with assay buffer, 100 μl of 1× bioti-
nylated specific reporter antibody for CD25 mixture was
applied for 1 hour in the dark at room temperature. The
reaction was detected with streptavidin-phycoerythrin
with a Luminex 100 IS 2.3 system (Austin, TX). The results
are presented as pg/mL. The experiments were repeated in
3 different sets of animals and the results were averaged.

Laser scanning confocal immunofluorescent microscopy
Expression of IL-2Rα and IL-2Rβ chains (CD25 and
CD122, respectively), MMP-9 and Fas-L was evaluated by
laser scanning confocal microscopy in cryosections of
murine eyes, human cornea and conjunctiva.

The right eyes and lids of mice from each group were
excised (n = 6 right eyes/group), embedded in OCT™ com-
pound (VWR, Swannee, GA), and flash frozen in liquid
nitrogen. Sagittal 8-μm sections were cut with a Micron
HM 500 cryostat (Waldorf, Germany) and stored at -
80°C.

Fresh human corneoscleral tissues and conjunctiva (pre-
served in less than 8 hour postmortem) that were not suit-
able for clinical use (donors aged 19-64 years, n = 4), were
obtained from the Lions Eye Bank of Texas (Houston) or
from the National Disease Research Interchange (Phila-
delphia). They were cut through the horizontal meridian,
frozen, and sectioned as described above.

Cryosections stained for CD25 (clone 7D4, 5 μg/mL, BD
Pharmingen, San Jose, CA), MMP-9 (10 μg/mL, Chemi-
con-Millipore, Billerica, MA), CD122 or Fas-L (rabbit pol-
yclonal antibodies, 5 μg/mL and 4 μg/mL, respectively,
both from Santa Cruz Biotechnology, Santa Cruz, CA)
were developed using appropriated Alexa-Fluor 488 con-
jugated IgG antibodies as previously described [32,37].
Negative controls were performed at the same time and
consisted of sections incubated with an isotype control

antibody or sections with omitted primary antibody.
Nuclei were counterstained with propidium iodide (2 μg/
ml in PBS) to yield a red color.

Dual label for CD25 and CD122 was performed by simul-
taneous incubation of both antibodies, followed by exten-
sive washing and simultaneous incubation of both
secondary antibodies (Alexa-Fluor 488 conjugated goat
anti-rat IgG and Alexa-Fluor 633 conjugated goat anti-rab-
bit IgG, 1:300 dilution) in a dark chamber. The co-locali-
zation of CD25 labeled in green and CD122 labeled in
blue yielded a turquoise color in merged images.

Digital images (512 × 512 pixels) were captured with a
laser-scanning confocal microscope (LSM 510, Zeiss with
krypton-argon and He-Ne laser; Zeiss, Thornwood, NY)
with either 488 excitation and 543 nm excitation emis-
sion filters (LP505 and LP560, for single labeling) or 488,
543 nm and 633 nm excitation emission filters (BP505-
550, BP 560-615 and LP 650, for dual labeling). They
were acquired with a 40/1.3× oil-immersion objective.
Images from DS and NS groups were captured with iden-
tical photomultiplier tube gain settings and processed
using Zeiss LSM-PC software and Adobe Photoshop 6.0
(Adobe Inc., San Jose).

Measurement of fluorescence intensity in cornea
Fluorescence intensity of CD25, CD122, MMP-9 and Fas-
L in digital images of cornea and conjunctiva captured by
laser scanning confocal immunofluorescent microscopy
was measured using NIS Elements Software (version 3.0,
BR, Nikon, Melville, NY). At least 6 images/time point/
strain were analyzed. The epithelial layer of the stained
cornea/conjunctiva was circumscribed by 2 masked
observers and the mean fluorescence intensity was calcu-
lated by the software and entered into Excel (Microsoft
Corp, Redmond, WA) and the results average within each
group (Microsoft Corp, Redmond, WA). Data is presented
as mean ± standard deviation of gray levels.

In situ zymography
In situ zymography was performed to localize the gelati-
nase activity in corneal cryosections obtained from
C57BL/6, BKO and WT mice (n = 6 per strain/time point)
as previously reported [29]. Sections were thawed and
incubated overnight with reaction buffer, 0.05 M Tris-
HCl, 0.15 M NaCl, 5 mM CaCl2, and 0.2 mM NaN3, pH
7.6, containing 40 μg/mL FITC-labeled DQ gelatin
(EnzChek, Molecular Probes, Eugene, OR). As a negative
control, 50 μM of 1, 10-phenanthroline, a metalloprotei-
nase inhibitor, was added to the reaction buffer before
applying the FITC-labeled DQ gelatin to frozen sections.
After incubation, the sections were washed three times
with PBS for 5 minutes and counterstained with propid-
ium iodide (2 μg/ml in PBS) for 5 minutes and were cov-
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ered with anti-fade Gel/Mount (Fisher, Atlanta, GA) and
coverslips. Areas of gelatinolytic activity were imaged by a
Nikon DXM 1200 digital camera (Nikon, Garden City,
NY). Proteolysis of the FITC-labeled DQ gelatin substrate
at sites of net gelatinase activity yields fluorescent gelatin-
FITC peptides and the intensity is proportional to the
amount of activity within in the tissue.

Corneal epithelial explant cultures
Human corneal epithelial cells were cultured from
explants taken from human corneoscleral rims, provided
by the Lions Eye Bank of Texas, using a previously
described method [38,39]. Corneal explants were grown
in a 6 well plate or on an eight-chamber slide (Nunc Lab-
Tek II, Nalge Nunc International Corp, Naperville, IL).

MMP-9 treatment of cultured human corneal epithelium
Except for the control group that were maintained in
serum-free culture media, the confluent corneal epithelial
cultures were exposed to increasing concentrations of
MMP-9 (100, 250 and 500 ng/mL, Calbiochem, EMD
Chemicals, Inc., San Diego, CA) for 48 hours. After 48
hours, the adherent cells were exposed to lysis buffer B
(Upstate, Lake Placid, NY) and an EDTA-free protease
inhibitor cocktail tablet (Roche Applied Science, Indiana-
polis, IN), for Western blot analysis. Three experiments
were performed using separate sets of cultures that were
initiated from different donor corneas. Cells were grown
in either a 6 well culture plate (which were used for West-
ern blot analysis) or an eight chamber slides (which were
processed for CD25 immunostaining as described above).

Western blot
Scraped mouse corneal epithelia and surgically excised
conjunctiva, collected from NS and DS5 C57BL/6 mice (n
= 4 animals/time point/3 independent sets of experi-
ments), were separately pooled and lysed in a buffer con-
taining 1% Triton X-100, 100 mM NaCl, 10 mM HEPES,
2 mM ethylenediaminetetraacetic acid (EDTA) and an
EDTA-free protease inhibitor cocktail tablet and centri-
fuged at 15,000 × g for 30 minutes at 4°C. The total pro-
tein concentrations of the cell extracts were measured by a
Micro BCA protein assay kit (Pierce, Rockford, IL).

Protein samples (75 μg/lane) were separated by SDS-poly-
acrylamide gel electrophoresis (4 to 15% Tris-HCl, gradi-
ent gels; Bio-Rad, Hercules, CA), and transferred
electronically to polyvinylidene difluoride membranes
(Millipore, Bedford, MA). The membranes were blocked
with 5% nonfat milk in TTBS (50 mM Tris, pH 7.5, 0.9%
NaCl, and 0.1% Tween-20) for 1 hour at room tempera-
ture, and then incubated overnight at 4°C with a mono-
clonal rat antibody anti-CD25 (clone 7D4, 10 μg/mL, BD
Pharmingen, San Jose, CA) with 5% nonfat milk in TTBS.
After washing with TTBS, the membranes were incubated

for 1 hour at room temperature with HRP-conjugated sec-
ondary antibody goat anti-rat IgG (1:2000 dilution;
Pierce, Rockford, IL). The signals were detected using the
ECL plus Western Blotting Detection System (Amersham
Biosciences, Little Chalfort Buckinghamshire, England)
and the images were acquired and analyzed by a Kodak
Image Station 2000R (Eastman-Kodak, New Haven, CT).
Bands intensities were measured with Kodak 1D v3.6 soft-
ware. The data is presented as the mean ± error mean of 3
independent experiments using arbitrary units.

Results
Desiccating stress induces gelatinolytic cleavage of CD25 
from the ocular surface epithelia
The presence and localization of CD25 and CD122 in the
ocular surface epithelia were investigated by immunoflu-
orescent staining (Figure 1) and the intensity of the stain-
ing was analyzed in digital images (Figure 2A). Using dual
label laser scanning immunofluorescent microscopy,
both IL-2R chains were present in all layers of the corneal
epithelium and in the apical and subapical layers of the
conjunctival epithelium of C57BL/6 mice (Figure 1A).
The level of expression of both IL-2R chains was higher in
the corneal than in the conjunctival epithelia (Figure 2A).

Desiccating stress caused a marked significant loss of
CD25 in all corneal and conjunctival epithelial layers,
while the CD122 staining intensity remained unchanged
(Figure 1A, 2A). In many areas in the conjunctiva, loss of
CD25 with no change in CD122 expression was observed
(Figure 1A, arrows). To confirm the loss of CD25, Western
blot was performed in corneal and conjunctival epithelial
lysates from NS controls and DS5 C57BL/6 mice, in 3
independent experiments. As shown in Figure 1(D-E),
there is a clear decrease in the intensity of the CD25 band
in the DS5 in corneal and conjunctival epithelia.

To investigate the role of gelatinases (MMP-2, MMP-9) in
the loss of CD25 in response to desiccating stress, in situ
zymography was performed in 3 different samples
obtained from NS and DS5 CD57BL/6 mice (Figure 1B).
Compared to control eyes, higher gelatinolytic activity
was noted in both the corneal and the conjunctival epi-
thelia after DS5. To determine if gelatinase activity was
due to an increase in MMP-9 expression, we performed
immunostaining for MMP-9 in sequential slides. Desic-
cating stress was also noted to significantly increase
immunoreactivity to MMP-9 in both cornea and conjunc-
tiva epithelia, compared to nonstressed controls (Figure
1C, 2A).

To investigate the role of MMP-9 in the loss of CD25 from
ocular surface epithelia, a separate group of mice were
treated with the MMP inhibitor, doxycycline. Topically
applied doxycycline prevented CD25 loss, while decreas-
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A: Dual label immunofluorescent laser scanning confocal microscopy of ocular surface tissue sections from C57BL/6 mice for interleukin 2 receptor alpha (CD25, green) and beta chains (CD122, blue) with propidium iodide (red) nuclear counterstaining in nonstressed controls (NS), 5 days (D) of desiccating stress (DS5) and DS5 treated with topical doxycycline (DS5+Doxy) in C57BL/6 miceFigure 1
A: Dual label immunofluorescent laser scanning confocal microscopy of ocular surface tissue sections from 
C57BL/6 mice for interleukin 2 receptor alpha (CD25, green) and beta chains (CD122, blue) with propidium 
iodide (red) nuclear counterstaining in nonstressed controls (NS), 5 days (D) of desiccating stress (DS5) and 
DS5 treated with topical doxycycline (DS5+Doxy) in C57BL/6 mice. A turquoise color indicates co-localization of 
both markers. Note partial disappearance of CD25 with preservation of CD122 after DS5 (arrows) in the conjunctival epithe-
lia. Scale bar = 50 μm 1. B. Tissue sections prepared for in situ zymography (in situ Z) in nonstressed controls (NS), 5 days (D) 
of desiccating stress (DS5) and DS5 treated with topical doxycycline (DS5+Doxy) in C57BL/6 mice. Scale bar = 100 μm. 1. C. 
Merged images of laser scanning confocal fluorescent microscopy of ocular surface tissue sections stained for matrix metallo-
proteinase 9 (MMP-9, in green) with propidium iodide (PI, red) nuclear counterstaining in NS controls, DS5 and DS5+Doxy 
groups in C57BL/6 mice. Scale bar = 50 μm 1. D. Representative Western blot showing effect of DS on CD25 expression in 
corneal (CO) and conjunctival epithelial (CJ) lysates. 1. E. Bar graphs are mean + standard error mean of CD25 band intensi-
ties in 3 independent Western blots (arbitrary units).
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Mean ± standard deviation of fluorescent intensity measurements in corneal and Conjunctival epithelia stained for CD25, CD122, MMP-9 in nonstressed (NS) C57BL/6 (A) or BKO and WT (B) and mice subjected for desiccating stress for 5 days (DS5)Figure 2
Mean ± standard deviation of fluorescent intensity measurements in corneal and Conjunctival epithelia stained 
for CD25, CD122, MMP-9 in nonstressed (NS) C57BL/6 (A) or BKO and WT (B) and mice subjected for desic-
cating stress for 5 days (DS5). A separate group of DS5 mice were topically treated with doxycycline (DS5+Doxy) (C) 
Mean ± standard deviation of fluorescent intensity measurements in corneal and conjunctival epithelia stained for Fas-L in non-
stressed (NS) C57BL/6 mice (B6-NS), desiccating stressed C57BL/6 mice for 5 days (B6-DS5), NS C57BL/6 mice treated with 
bovine serum albumin (injection control, B6-NS+BSA) or IL-2 subconjunctival injections (B6-NS+IL-2), CD25 knock-out mice 
(CD25KO-NS). *P < 0.05; ** = P < 0.01; *** = P < 0.001.
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ing DS-induced gelatinase activity and MMP-9 staining in
corneal and conjunctival epithelium (Figure 1A-C; 2A).

Soluble CD25 is present in tear fluid of C57BL/6 mice
To determine if CD25 is shed from the ocular surface epi-
thelia into the tears, the presence of soluble CD25 was
evaluated in tear fluid washings obtained from NS and
DS5 mice. Soluble CD25 was higher in tears of DS5 than
NS mice (59.40 ± 1.13 vs. 27.22 ± 26.48 ng/mL, respec-
tively, P < 0.05). Compared to the levels in the DS5 group,
topical treatment with the metalloproteinase inhibitor
doxycycline (DS5+Doxy) decreased the levels of soluble
CD25 in tears (9.87 ± 3.67 ng/mL, P < 0.01).

MMP-9 knock-out confers resistance to CD25 loss
To confirm the specific role of the gelatinase MMP-9 in the
loss of CD25 from the ocular surface epithelia in response
to desiccating stress, experimental dry eye was induced in
BKO and their WT littermates for 5 days. Immunostaining
for CD25 and CD122 was performed in cryosections (Fig-
ure 3) and intensity of immunoreactivity was measured in
the epithelial layer (Figure 2B).

CD25 and CD122 immunoreactivity were found in all
layers of corneal epithelia and suprabasal and apical lay-
ers of conjunctiva in NS BKO and WT (Figure 3), in a sim-
ilar pattern to NS C57BL/6 mice. However; the staining
intensity was weaker than seen in C57BL/6, perhaps be
due to different genetic backgrounds between the two
strains. DS5 caused a significant decrease in CD25 expres-
sion in both corneal and conjunctival epithelia in WT
mice, while CD25 immunoreactivity was preserved in the
BKO mice, with no concomitant change in CD122 immu-
noreactivity in either strain (Figure 2B and 3).

We also measure the presence of soluble CD25 in tear
fluid washings obtained from BKO and WT before and
after desiccating stress for 5 days. Soluble CD25 was
higher in tears of DS5 WT mice than NS WT (10.1 ± 5.66
vs. 4.8 ± 4.2 ng/mL, respectively, P < 0.05). No change in
the levels of soluble CD25 in tears of BKO mice were
observed between NS and DS5 (6.05 ± 5.64 vs. 5.01 ± 4.5
ng/mL, P > 0.05).

CD25 appears to be a functional IL-2 receptor
One of the functions of IL-2 is to stimulate production of
Fas-L[5]. Fas-L has been previously found to be expressed
by the corneal epithelium and endothelium [40] where it
is considered to play an important role in the establish-
ment and maintenance of immune privilege by inducing
apoptosis of lymphocytes. To determine if CD25 is a com-
ponent of a functional IL-2R on the ocular surface epithe-
lium, we evaluated Fas-L expression in eyes with normal
and reduced levels of CD25 and after exogenous adminis-
tration of IL-2 for 5 days.

Fas-L expression was evaluated by immunofluorescent
scanning confocal microscopy in NS eyes after subcon-
junctival injection of IL-2 or vehicle alone (BSA) (Figure
4), in 3 different C57BL/6 mice and intensity of immuno-
reactivity was measured in the epithelial layer (Figure 2C).
Significant increased Fas-L immunostaining was observed
in all layers of the conjunctival and corneal epithelia in IL-
2 injected eyes compared to vehicle injected eyes (Figures
2C and 4A). Both DS5 C57BL/6 and NS CD25KO mice
exhibited significantly lower levels of immunoreactivity
to Fas-L in the corneal epithelia compared to NS C57BL/6
(Figures 2C and 4A). The lowest level of Fas-L immunore-
activity was seen in the NS CD25KO cornea (Figure 2C).
Taken together, these findings indicate that CD25 is a
component of a functional IL-2 receptor on the ocular sur-
face epithelia.

MMP-9 cleaves CD25 in cultured human corneal epithelial 
cells
We initially confirmed the presence of CD25 and CD122
in the human ocular surface epithelia by laser scanning
immunofluorescent microscopy in cryosections of central

Merged images of laser scanning confocal fluorescent micros-copy ocular surface tissue sections stained for interleukin 2 receptor alpha chain (CD25, in green) and interleukin 2 receptor beta chain (CD12, in green) with propidium iodide (PI, red) nuclear counterstaining in nonstressed controls (NS), 5 days (D) of desiccating stress (DS5) in MMP-9 knock-out (BKO) and wild-type (WT) miceFigure 3
Merged images of laser scanning confocal fluorescent 
microscopy ocular surface tissue sections stained for 
interleukin 2 receptor alpha chain (CD25, in green) 
and interleukin 2 receptor beta chain (CD12, in 
green) with propidium iodide (PI, red) nuclear coun-
terstaining in nonstressed controls (NS), 5 days (D) 
of desiccating stress (DS5) in MMP-9 knock-out 
(BKO) and wild-type (WT) mice. All images shown are 
the merged image of CD25 and CD122 (in green) with PI 
counterstaining. Scale bar = 50 μm.
Page 7 of 11
(page number not for citation purposes)



Journal of Inflammation 2009, 6:31 http://www.journal-inflammation.com/content/6/1/31

Page 8 of 11
(page number not for citation purposes)

Merged images of laser scanning confocal fluorescent microscopy of cornea (CO) and conjunctiva (CJ) sections stained for Fas-ligand (green) with propidium iodide (PI, red) nuclear counterstaining in nonstressed (NS) C57BL/6 mice (B6-NS), desiccating stressed C57BL/6 mice for 5 days (B6-DS5), NS C57BL/6 mice treated with bovine serum albumin (injection control, B6-NS+BSA) or IL-2 subconjunctival injections (B6-NS+IL-2), CD25 knock-out mice (CD25KO-NS)Figure 4
Merged images of laser scanning confocal fluorescent microscopy of cornea (CO) and conjunctiva (CJ) sections 
stained for Fas-ligand (green) with propidium iodide (PI, red) nuclear counterstaining in nonstressed (NS) 
C57BL/6 mice (B6-NS), desiccating stressed C57BL/6 mice for 5 days (B6-DS5), NS C57BL/6 mice treated with 
bovine serum albumin (injection control, B6-NS+BSA) or IL-2 subconjunctival injections (B6-NS+IL-2), CD25 
knock-out mice (CD25KO-NS). Scale bar = 100 μm 3. B. Laser scanning confocal fluorescent microscopy of human tissue 
sections (cornea, limbus and conjunctiva) stained for interleukin 2 receptor alpha chain (CD25, green) with PI (red) nuclear 
counterstaining. For the limbus, the CD25 and CD122 image (in green) is shown besides the merged image with PI nuclear 
staining. Note absence of staining on the basal epithelial layer of the limbus. Scale bar = 50 μm 3. C. Laser scanning confocal 
microscopy of human corneal epithelial cells grown on an eight chamber slide and stained for CD25 after treatment with 
increasing concentrations of MMP-9 for 48 hours. Scale bar = 50 μm 3. D. Representative Western blot showing effect of 
MMP-9 treatment on CD25 expression by cultured human corneal epithelial cells lysates. Increasing MMP-9 concentration 
decreased CD25 levels.
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cornea, limbus and conjunctiva (Figure 4B) and in human
cultured corneal epithelial cells. CD25 and CD122 immu-
noreactivity was found in all layers of human central cor-
nea and conjunctiva, but it was absent in the basal layer of
limbus (Figure 4B). In primary human cultured corneal
epithelial cells, we observed that CD25 immunoreactivity
was strong in the larger superficial differentiated cells, in
stratified cultures, while weaker staining was noted in
basal cells of (data not shown).

To determine if CD25 could be cleaved from the ocular
surface epithelia cells by MMP-9, we exposed human cul-
tured corneal epithelia to recombinant MMP-9. Treatment
of these cultured cells with increasing concentrations of
MMP-9 progressively decreased membrane CD25 immu-
noreactivity, with very minimal staining observed follow-
ing exposure to MMP-9 500 ng/mL (Figure 4C). Western
blot revealed that MMP-9 treatment decreased cell associ-
ated CD25 levels in a concentration-dependent manner
(Figure 4D).

Discussion
Our studies found that the unique chains of the IL-2R
(CD25 and CD 122) are expressed by the ocular surface
epithelia in mice and humans. In humans, CD25 and
CD122 were produced by all cell layers in central cornea
and conjunctiva, while they were expressed by the apical
epithelium of the corneal limbus in a differentiation
dependent fashion. The lack of IL-2R receptors in the lim-
bal basal layer, the site of putative corneal epithelial stem
cells, deserves further investigation.

Desiccating stress in mice was found to decrease CD25
immunoreactivity in the corneal and conjunctival epithe-
lium and increase soluble CD25 in tears. This decrease
appeared to be due in part to proteolytic cleavage by
MMP-9 because there was no change in the level of CD25
expression in MMP-9 deficient mice and after topical
treatment of mice exposed to DS with the metalloprotein-
ase inhibitor doxycycline. Furthermore, treatment of pri-
mary human cultured corneal epithelium with MMP-9
induced a dose-dependent loss of CD25 from the cell sur-
face.

We have previously found that dry eye and desiccating
stress stimulate production of MMP-9, as well as other
MMPs by the ocular surface epithelia [28,29,41], while no
changes in the tissue inhibitor of MMPs was observed[31]
MMP-9 was found to degrade the tight-junction protein
occludin and to disrupt apical epithelial barrier function
in the cornea[28,29] Furthermore, MMP-9 knock-out
mice were found to be resistant to the corneal epithelial
disease that develops in response to dry eye[28] MMP-9 in
human tears has also been found to increase in a variety
of ocular surface diseases, including sterile corneal ulcera-

tion [42-46] In a group of dry eye patients, we observed
that tear MMP-9 activity levels increased as the severity of
corneal disease progressed. Tear MMP-9 activity levels also
correlated positively with corneal fluorescein staining
scores and with low contrast visual acuity in this study[47]

It is worth noting that the role of MMP-9 in the cleavage
of soluble CD25 is still controversial. High doses of MMP-
9 (1 ug/mL) were shown to downregulate the expression
of IL-2Rα on activated human T cells [18]. Another study
demonstrated that treatment of Kit225 leukaemic cells
with recombinant MMP-9 slightly decreased membrane
CD25 expression and increased the concentration of sIL-
2Rα in the supernatants. [48] However, a selective inhibi-
tor of MMP-9 failed to inhibit the release of sIL-2Ra by the
Kit225 cell line or by phytohaemagglutinin (PHA)-acti-
vated peripheral blood mononuclear cells, while a broad
MMP-inhibitor such as TAPI-0 succeeded. [48]

Using MMP-9 knock-out mice on a C57BL/6 background,
El Houda Agueznay and colleagues did not observe differ-
ences in baseline serum soluble CD25 concentrations and
in soluble CD25 production by activated T cells compared
to wild-type mice [48]. Our in vitro studies support a role
for MMP-9 in cleaving cell membrane CD25. We found a
decrease in cell associated CD25 when human corneal
epithelial cells were treated with high concentrations of
MMP-9 (Figure 4). Furthermore, our in vivo results dem-
onstrated a significant increase in soluble CD25 in tear
fluid of WT subjected to desiccating stress, compared to
non-stressed mice, whereas there was bi measureable
change in concentration of soluble CD25 in tears of BKO
mice subjected to similar environmental conditions.

CD25 on the ocular surface epithelium appears to be a
component of a functional IL-2R. We found that exoge-
nous IL-2 stimulation increased expression of Fas-L by the
surface epithelia, while mice subjected to DS and those
lacking the alpha portion of IL-2 receptor had low levels
of Fas-L.

The concentration of soluble CD25 in tears may prove to
be a valuable indicator of the level of proteolytic activity
on the ocular surface epithelium. Significantly increased
tear concentrations of CD25 have previously been noted
in a number of ocular surface diseases, including vernal
and atopic keratoconjunctivitis, seasonal allergic conjunc-
tivitis and rosacea blepharoconjunctivitis [21]. Increased
tear protease activity on the ocular surface has been
reported in many of these conditions [8,9,16].

IL-2 has previously been detected in tear fluid [36,49,50]
and based on the findings of our study it is possible that
IL-2 may play a vital role in maintaining homeostasis on
the ocular surface. IL-2 has been found to stimulate secre-
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tion of the key immunoregulatory cytokine TGF-β by cul-
tured intestinal epithelial cells and it may have a similar
role on the ocular surface [9]. These studies prove the
rationale for further investigation of the role of IL-2 sign-
aling on the ocular surface.

Abbreviations used in this manuscript
Fas-L: Fas-ligand; IL-2Rβ: interleukin 2 receptor beta
chain; IL-2Rα: interleukin 2 receptor alpha chain; sIL-
2Rα: soluble interleukin 2 receptor alpha chain; SS: Sjö-
gren's syndrome; MMP-9: matrix metalloproteinase 9;
BKO: gelatinase B (MMP-9) knock-out mice strain; WT:
wild-type; CD25KO: CD25 knock-out mice strain; DS:
desiccating stress; DS5: desiccating stress for 5 days; NS:
nonstressed; PI: propidium iodide.
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